Контрольная работа: Структурные уровни организации материи: макромир, микромир, мегамир. Реферат: Структурные уровни организации материи. Микро, макро, мега миры Структурные уровни организации неживой материи мегамир

КОНТРОЛЬНАЯ РАБОТА

по дисциплине концепции современного естествознания

Тема №9
«Структурные уровни организации материи»

План:
Введение………………………………………………………… ….……………..2

    Роль системных представлений в анализе структурных уровней организации материи……………….……………………………………2
    Структурные уровни живого……………………………………………..6
    Сущность макромира, микромира и мегамира………………………….7
    Микромир…………………………………………………..… …………..8
    Макромир…………………………………………………..… …………11
    Мегамир…………………………………………………………… ……12
    Анализ классического и современного понимания концепции макромира……………………………………………………… …….…13
Заключение…………………………………………………… …….…………..17

Введение.
Все объекты природы (живой и неживой природы) можно представить в виде системы, обладающей особенностями, характеризующей их уровни организации. Концепция структурных уровней живой материи включает представления системности и связанной с ней организацией целостности живых организмов. Живая материя дискретна, т.е. делится на составные части более низкой организации, имеющие определенные функции.
Структурные уровни различаются не только классами сложности, но и по закономерности функционирования. Иерархическая структура такова, что каждый высший уровень не управляет, а включает низший. С учетом уровня организации можно рассматривать иерархию структур организации материальных объектов живой и неживой природы. Такая иерархия структур начинается с элементарных частиц и заканчивается живыми сообществами. Концепция структурных уровней впервые была предложена в 20-х годах нашего столетия. В соответствии с ней структурные уровни различаются не только по классам сложностью, но по закономерностям функционирования. Концепция включает в себя иерархию структурных уровней, в которой каждый следующий уровень входит в предыдущий.

    Роль системных представлений в анализе структурных уровней организации материи.
Весь окружающий нас мир представляет собой движущуюся материю в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями. Рассмотрим подробнее, что же такое материя, а так же ее структурные уровни.
Материя (лат. Materia – вещество), «…философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от нас».
Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. Материя включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все те, которые в принципе могут быть познаны в будущем на основе совершенствования средств наблюдения и эксперимента.
В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира (атом, организм, галактика и сама Вселенная) может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность.
Основные принципы системного подхода:
    Целостность, позволяющая рассматривать одновременно систему как единое целое и в то же время как подсистему для вышестоящих уровней.
    Иерархичность строения, то есть наличие множества (по крайней мере, двух) элементов, расположенных на основе подчинения элементов низшего уровня элементам высшего уровня. Реализация этого принципа хорошо видна на примере любой конкретной организации. Как известно, любая организация представляет собой взаимодействие двух подсистем: управляющей и управляемой. Одна подчиняется другой.
    Структуризация, позволяющая анализировать элементы системы и их взаимосвязи в рамках конкретной организационной структуры. Как правило, процесс функционирования системы обусловлен не столько свойствами её отдельных элементов, сколько свойствами самой структуры.
    Множественность, позволяющая использовать множество кибернетических, экономических и математических моделей для описания отдельных элементов и системы в целом.
Системность, свойство объекта обладать всеми признаками системы.
Для обозначения целостности объектов в науке было выработано понятие «система».
Система - это комплекс элементов, находящихся во взаимодействии. В переводе с греческого это целое, составленное из частей, соединение.
Понятие «элемент» означает минимальный, далее уже неделимый компонент в рамках данной системы. Система может состоять не только из однородных объектов, но и разнородных. Она может быть по своему строению простой и сложной. Сложная система состоит из элементов, которые в свою очередь образуют подсистемы разного уровня сложности и иерархии.
Каждая система характеризуется не только наличием связей и отношений между образующими ее элементами, но и неразрывным единством с окружающей средой.
Можно выделить различные типы систем:
    по характеру связи между частями и целым - неорганические и органические;
    по формам движения материи - механические, физические, химические, физико-химические;
    по отношению к движению - статистические и динамические;
    по видам изменений - нефункциональные, функциональные, развивающиеся;
    по характеру обмена со средой - открытые и закрытые;
    по степени организации - простые и сложные;
    по уровню развития - низшие и высшие;
    по характеру происхождения - естественные, искусственные, смешанные;
    по направлению развития - прогрессивные и регрессивные.
Совокупность связей между элементами образует структуру системы.
Устойчивые связи элементов определяют упорядоченность системы. Существуют два типа связей между элементами системы – по «горизонтали» и по «вертикали».
Связи по «горизонтали» - это связи координации между однопорядковыми элементами. Они носят коррелирующий характер: ни одна часть системы не может изменяться без того, чтобы не изменились другие части.
Связи по «вертикали» - это связи субординации, то есть соподчинения элементов. Они выражают сложное внутреннее устройство системы, где одни части по своей значимости могут уступать другим и подчиняться им. Вертикальная структура включает уровни организации системы, а так же их иерархию.
Следовательно, исходным пунктом всякого системного исследования является представление именно о целостности изучаемой системы.
Целостность системы означает, что все составные части, взаимодействуя и соединяясь вместе, образуют уникальное целое, обладающее новыми системными свойствами.
Свойства системы – не просто сумма свойств ее элементов, а нечто новое, присущее только системе в целом.
Итак, согласно современным научным взглядам на природу, все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы.
В естественных науках выделяют два больших класса материальных систем: системы неживой природы и системы живой природы.
К системам неживой природы относятся элементарные частицы и поля, физический вакуум, атомы, молекулы, макроскопические тела, планеты и планетные системы, звезды, галактики и система галактик – Метагалактика.
К системам живой природы относятся биополимеры (информационные молекулы), клетки, многоклеточные организмы, популяции, биоценозы и биосфера как совокупность всех живых организмов.
В природе все взаимосвязано, поэтому можно выделить и такие системы, которые включают в себя элементы как живой, так и неживой природы – биогеоценозы, и биосферу Земли.
    Структурные уровни живого.
Структурный, или системный, анализ обнаруживает, что мир живого чрезвычайно многообразен, имеет сложную структуру. На основе равных критериев могут быть выделены различные уровни, или подсистемы, живого мира. Наиболее распространенным является выделение на основе критерия масштабности следующих уровней организации живого.
Биосферный – включающий всю совокупность живых организмов Земли вместе с окружающей их природной средой. На этом уровне биологической наукой решается такая проблема, как изменение концентрации углекислого газа в атмосфере. Используя это подход, ученые выяснили, что в последнее время концентрация углекислого раза возрастает ежегодно на 0,4%, создавая опасность глобального повышения температуры, возникновения так называемого «парникового эффекта».
Уровень биоценозов выражает следующую ступень структуры живого, состоящую из участков Земли с определенным составом живых и неживых компонентов, представляющих единый природный комплекс, экосистему. Рациональное использование природы невозможно без знания структуры и функционирования биогеоценозов, или экосистем.
Популяционно-видовой уровень образуется свободно скрещивающимися между собой особями одного и того же вида. Его изучение важно для выявления факторов, влияющих на численность популяций.
Организменный и органно-тканевый уровни отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живых существ.
Клеточный и субклеточный уровниотражают процессы специализации клеток, а также различные внутриклеточные включения.
Молекулярный уровень составляет предмет молекулярной биологии, одной из важнейших проблем которой является изучение механизмов передачи генной информации и развитие генной инженерии и биотехнологии.
Разделение живой материи на уровни является, конечно, весьма условным. Решение конкретных биологических проблем, таких, как регуляция численности вида, опирается на данные о всех уровнях живого. Но все биологи согласны в том, что в мире живого существуют ступенчатые уровни, своего рода иерархии. Представление о них наглядно отражает системный подход в изучении природы, который помогает глубже понять ее.
Фундаментальной основой живого мира, является клетка. Ее исследование помогает уяснить специфику всего живого.
    Сущность макромира, микромира и мегамира.
Структурные уровни материи образованы из определенного множества объектов какого-либо класса и характеризуются особым типом взаимодействия между составляющими их элементами.
Критерием для выделения различных структурных уровней служат следующие признаки:
    пространственно-временные масштабы;
    совокупность важнейших свойств;
    специфические законы движения;
    степень относительной сложности, возникающей в процессе исторического развития материи в данной области мира;
    некоторые другие признаки.
Все объекты, которые исследует наука, относятся к трем «мирам» (микромир, макромир и мегамир), которые и представляют собой уровни организации материи.


Микромир.
Приставка «микро» означает отношение к очень малым размерам. Таким образом, можно сказать, что микромир – это что-то небольшое.
Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная размерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечности до 10 -24 секунд.
В философии в качестве микромира изучается человек, а в физике, концепции современного естествознания в качестве микромира изучаются молекулы.

Микромир имеет свои особенности, которые можно выразить так:
1) единицы измерения расстояния (м, км и т. д.), используемые человеком, применять просто бессмысленно;
2) единицы измерения веса человека (г, кг, фунты и т. д.) применять также бессмысленно.
Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII веке была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов.
Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX веке Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе.
В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX века, когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов.
История исследования строения атома началась в 1895 году благодаря открытию Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов.

Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.
Существовало несколько моделей строения атома.
В 1902 году английский физик У. Томсон (лорд Кельвин) предложил первую модель атома - положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг».
В 1911 году Э. Резерфорд предложил модель атома, которая напоминала солнечную систему: в центре находится атомное ядро, а вокруг него по своим орбитам движутся электроны.
Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

Обе эти модели оказались противоречивы.
В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.
Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:
1) в каждом атоме существует несколько стационарных состояний.
2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует.
Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.
Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Макромир.
Естественно, есть объекты, которые по своим размерам гораздо больше объектов микромира. Эти объекты и составляют макромир. Макромир «населяют» только те объекты, которые по своим размерам соизмеримы с размерами человека. К объектам макромира можно отнести и самого человека
Макромир имеет довольно сложную организацию. Его самый маленький элемент – атом, а самая большая система – планета Земля. В его состав входят как неживые системы, так и живые системы различного уровня. Каждый уровень организации макромира содержит как микроструктуры, так и макроструктуры. Например, молекулы вроде бы должны относится к микромиру, поскольку они нами непосредственно не наблюдаются. Но, с одной стороны, самая большая структура микромира – атом. А у нас есть сейчас возможность видеть с помощью микроскопов последнего поколения даже часть атома водорода. С другой стороны, есть огромные молекулы, чрезвычайно сложные по своему строению, например, ДНК ядра может быть длинной почти в один сантиметр. Подобная величина уже вполне сопоставима с нашим опытом, и если бы молекула была толще, мы бы ее увидели невооруженным глазом.
Все вещества, находящиеся в твердом или жидком состоянии, состоят из молекул. Молекулы образуют и кристаллические решетки, и руды, и скалы, и другие объекты, т.е. то, что мы можем почувствовать, увидеть и т.д. Однако, несмотря на такие огромные образования, как горы и океаны, - это все молекулы, связанные между собой. Молекулы – новый уровень организации, они все состоят из атомов, которые в этих системах рассматриваются как неделимые, т.е. элементы системы.
Как физический уровень организации макромира, так и химический уровень имеют дело с молекулами и различными состояниями вещества. Однако химический уровень значительно более сложный. Он не сводится к физическому, рассматривающему строение веществ, их физические свойства, движение (все это было исследовано в рамках классической физики) хотя бы по сложности химических процессов и реакционной способности веществ.
На биологическом уровне организации макромира, кроме молекул, мы обычно не можем без микроскопа разглядеть и клетки. Но ведь есть клетки, которые достигают огромной величины, например аксоны нейронов осьминогов длинной в один метр и даже больше. Вместе с тем все клетки имеют определенные сходные черты: они состоят из мембран, микротрубочек, у многих есть ядра и органеллы. Все мембраны и органеллы в свою очередь состоят из гигантских молекул (белков, липидов и др.), а эти молекула состоят из атомов. Поэтому как гигантские информационные молекулы (ДНК, РНК, ферменты), так и клетки – это микроуровни биологического уровня организации материи, включающего и такие огромные образования, как биоценозы и биосфера.

Мегамир.
Мегамир – это мир объектов, которые несоизмеримо больше человека.
Вся наша Вселенная – это мегамир. Ее размеры огромны, она безгранична и постоянно расширяется. Вселенную заполняют объекты, которые значительно больше нашей планеты Земля и нашего Солнца. Нередко бывает, что разница между какой-либо звездой за пределами Солнечной системы в десятки раз превосходит Землю.
Мегамир, или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию в форме планет и планетных систем, возникающих вокруг звезд, звезд и звездных систем - галактик; системы галактик - Метагалактики.
Исследование мегамира тесно связано с космологией и космогонией.
Космогония – это раздел науки астрономии, который изучает происхождение галактик, звезд, планет, а также других объектов. На сегодня космогонию можно разделить на две части:
1) космогония Солнечной системы. Эту часть (или вид) космогонии по-другому называют планетной;
2) звездная космогония.
И хотя на всех этих уровнях действуют свои специфические закономерности, микромир, макромир и мегамир теснейшим образом взаимосвязаны.

    Анализ классического и современного понимания концепции макромира.
В истории изучения природы можно выделить два этапа: донаучный и научный. Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествознания в XVI-XVII веках. В этот период учения о природе носили чисто натурфилософский характер: наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.
Наиболее значимой для последующего развития естественных наук была концепция дискретного строения материи - атомизм, согласно которому все тела состоят из атомов -мельчайших в мире частиц.
Исходными началами в атомизме выступали атомы и пустота. Сущность протекания природных процессов объяснялась на основе механического взаимодействия атомов, их притяжения и отталкивания.
Поскольку современные научные представления о структурных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начинать исследование нужно с концепций классической физики.
И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.
Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики. Считалось, что все физические процессы можно свести к перемещению материальных точек под действием силы тяготения, которая является дальнодействующей
Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлении, которые не могли быть полностью объяснены в рамках механистической картины мира.
Разрабатывая оптику, И. Ньютон, следуя логике своего учения, считал свет потоком материальных частиц – корпускул. В корпускулярной теории света И. Ньютона утверждалось, что светящиеся тела излучают мельчайшие частицы, которые движутся в согласии с законами механики и вызывают ощущение света, попадая в глаз. На базе этой теории И. Ньютоном было дано объяснение законам отражения и преломления света.
Наряду с механической корпускулярной теорией, осуществлялись попытки объяснить оптические явления принципиально иным путем, а именно - на основе волновой теории, сформулированной Х. Гюйгенсом. Главным аргументом в пользу своей теории Х.Гюйгенс считал тот факт, что два луча света, пересекаясь, пронизывают друг друга без каких-либо помех в точности, как два ряда волн на воде.
Согласно же корпускулярной теории, между пучками излученных частиц, каковыми является свет, возникали бы столкновения или, по крайней мере, какие-либо возмущения. Исходя из волновой теории Х. Гюйгенс успешно объяснил отражение и преломление света.
Однако против нее существовало одно важное возражение. Как известно, волны обтекают препятствия. А луч света, распространяясь по прямой, обтекать препятствия не может. Если на пути луча света поместить непрозрачное тело с резкой гранью, то его тень будет иметь резкую границу. Однако это возражение вскоре было снято благодаря опытам Гримальди. При более тонком наблюдении с использованием увеличительных линз обнаруживалось, что на границах резких теней можно видеть слабые участки освещенности в форме перемежающихся светлых и темных полосок или ореолов. Это явление было названо дифракцией света.
Волновая теория света была вновь выдвинута в первые десятилетия ХІХ века английским физиком Т. Юнгом и французским естествоиспытателем О. Ж. Френелем. Т. Юнг дал объяснение явлению интерференции, т.е. появлению темных полосок при наложении света на свет. Суть ее можно описать с помощью парадоксального утверждения: свет, добавленный к свету, не обязательно дает более сильный свет, но может давать более слабый и даже темноту. Причина этого заключается в том, что согласно волновой теории, свет представляет собой не поток материальных частиц, а колебания упругой среды, или волновое движение. При наложении друг на друга цепочек волн в противоположных фазах, где гребень одной волны совмещается с впадиной другой, они уничтожают друг друга, в результате чего появляются темные полосы.
Другой областью физики, где механические модели оказались неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М.Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушали представления ньютоновской физики о дискретном веществе, как единственном виде материи и положили начало электромагнитной картине мира. Явление электромагнетизма открыл датский естествоиспытатель Х.К.Эрстед, который впервые заметил магнитное действие электрических токов.
Позже М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Его работы стали исходным пунктом исследований Дж.К.Максвелла, заслуга которого состоит в математической разработке идей М.Фарадея о магнетизме и электричестве.
Обобщив установленные ранее экспериментальным путем законы электромагнитных явлений (Кулона, Ампера) и открытое М.Фарадеем явление электромагнитной индукции, Максвелл чисто математическим путем нашел систему дифференциальных уравнений, описывающих электромагнитное поле. Эта система уравнений дает в пределах своей применимости полное описание электромагнитных явлений и представляет собой столь же совершенную и логически стройную теорию, как и система ньютоновской механики.
Из уравнений следовал важнейший вывод о возможности самостоятельного существования поля, не «привязанного» к электрическим зарядам. В
и т.д.................

В своем формировании категория «материя » (как субстанция мира) прошла три этапа или так называемые три исторические формы материализма:
На первом этапе материя отождествлялась с конкретной природной стихией, с конкретным видом вещества: водой (Фалес), воздухом (Анаксимен), огнем (Гераклит), атомами (Демокрит). Этот этап носит название стихийного материализма древних.

Второй этап носит название механистического, метафизического материализма. Он был характерен для . Развитие в XVII-XVIII вв. математики и механики coдействовало изучению природы и обогащению представлений о материи. В новоевропейской философии материя наделялась рядом атрибутивных свойств, которые были изучены в рамках классической науки того времени (механики Ньютона) - массой, протяженностью, инерцией, неделимостью, непроницаемостью и т.д. Носителем этих свойств выступали различные проявления первовещества (элементы, корпускулы, атомы). На этом этапе завершается построение механистической картины мира. Эта картина мира сложилась в результате научной революции XVI-XVII вв., оформилась в целостное образование к XVIII веку и господствовала на протяжении XIX века. Основу механистической картины мира составил атозм, который весь мир, включая и человека, понимал как совокупность огромного числа атомов, перемещающихся в пространстве и времени. Ключевым понятием было понятие движение. Однако все многообразие форм и видов движения в природе сводилось к механическому движению (к простому перемещению тел И пространстве). Кроме того, в качестве движения предполагался некий первотолчок, находящийся за пределами мира. Отсюда и знание - механистический, метафизический материализм.

Следует отметить, что для первого и второго этапов характерно представление о материи как о субстрате, т.е. как о строительном материале, из которого состоит все в мире. Кроме того, эти этапы были тесно связаны с уровнем развития научного знания своего времени. В XIX веке совершается ряд научных открытий:
- физика проникает в микромир;
- наряду с веществом вводится понятие электромагнитного поля (Фарадей, Максвелл);
- открывается явление радиоактивности;
- атом перестает быть конечным пределом делимости материи;
- А. Эйнштейн создает теорию относительности.

Все это способствовало появлению убеждения, что нельзя материю отождествлять с веществом , с каким-то конкретным ее видом, т.к. наука постоянно развивается, и как следствие этого меняются представления о мире. В философии возникла выработать такое представление о материи, которое характеризовало бы ее любые формы, виды, независимо оттого, познаны они уже или нет, и независимо от того, какими конкретными свойствами и качествами эти формы и виды обладают.

Третий этап - это этап возникновения материализма. В диалектико-материалистической традиции были окончательно разведены конкретно-научный и философские подходы к пониманию материи, а в ее определении, сформулированном В.И. Лениным, из всего многообразия свойств в качестве самого главного было выделено свойство материи быть объективной реальностью, т.е. не зависеть от . Причем, в диалектико-материалистической традиции материя, как объективная реальность охватывает не только мир , но социум т.е. объективные процессы в обществе.

Материя - это Философская категория для обозначения объективной реальности, существующей независимо от человеческого сознания и отображаемой им. Понятие материя - это абстракция. Не существует материя как таковая вообще, как и человек вообще, стол вообще, т.е. как нечто чувственно воспринимаемое, как нечто положенное рядом с вещами. Материя существует в конкретных бесконечно многообразных видах и форма вещей, процессов, явлений, состояний. Ни один из этих видов, форм и состояний не может быть отождествлен с материей, но все и многообразие, включая их связи и взаимодействия, составляю материальную действительность.

В основе современных научных представлений о строении материи лежит идея о ее сложной системно-структурной организации. Материя - это не сплошное однородное целое . Она структурно организована, и эту структурную организацию можно обнаружить в любом ее элементе. К тому же структура материи не является одноуровневой. Она представляет собой многообразие качественно своеобразных материальных форм различной степени-сложности.

1. Введение.

Весь окружающий нас мир представляет собой движущуюся материю в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями. Рассмотрим подробнее, что же такое материя, а так же ее структурные уровни.

1. Что такое материя. История возникновения взгляда на материю.

Материя (лат. Materia – вещество), «…философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от нас».

Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. Материя включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все те, которые в принципе могут быть познаны в будущем на основе совершенствования средств наблюдения и эксперимента. С точки зрения марксистско-ленинского понимания материи, она органически связана с диалектико-материалистическим решением основного вопроса философии; оно исходит из принципа материального единства мира, первичности материи по отношению к человеческому сознанию и принципа познаваемости мира на основе последовательного изучения конкретных свойств, связей и форм движения материи.

В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность. Для обозначения целостности объектов в науке было выработано понятие системы.

Материя как объективная реальность включает в себя не только вещество в четырех его агрегатных состояниях (твердом, жидком, газообразном, плазменном), но и физические поля (электромагнитное, гравитационное, ядерное и т. д.), а также их свойства, отношения, продукты взаимодействия. Входит в нее и антивещество (совокупность античастиц: позитрон, или антиэлектрон, антипротон, антинейтрон), недавно открытое наукой. Антивещество ни в коем случае не антиматерия. Антиматерии вообще быть не может. Дальше «не» (не-материи) отрицание здесь не идет.

Движение и материя органически и нерасторжимо связаны друг с другом: нет движения без материи, как нет и материи без движения. Иначе говоря, нет в мире неизменных вещей, свойств и отношений. «Все течет», все изменяется. Одни формы или виды сменяются другими, переходят в другие – движение постоянно. Покой – диалектически исчезающий момент в беспрерывном процессе изменения, становления. Абсолютный покой равнозначен смерти, а вернее – несуществованию. Можно понять в данной связи А. Бергсона, рассматривавшего всю реальность как неделимую движущуюся непрерывность. Или А.Н.Уайтхеда, для которого «реальность есть процесс». И движение, и покой с определенностью фиксируются лишь по отношению к какой-то системе отсчета. Так, стол, за которым пишутся эти строки, покоен относительно данной комнаты, она, в свою очередь, - относительно данного дома, а сам дом – относительно Земли. Но вместе с Землей стол, комната и дом движутся вокруг земной оси и вокруг Солнца.

Движущаяся материя существует в двух основных формах – в пространстве и во времени. Понятие пространства служит для выражения свойства протяженности и порядка сосуществования материальных систем и их состояний. Оно объективно, универсально (всеобщая форма) и необходимо. В понятии времени фиксируется длительность и последовательность смены состояний материальных систем. Время объективно, неотвратимо и необратимо. Следует различать философские и естественнонаучные представления о пространстве и времени. Собственно философский подход представлен здесь четырьмя концепциями пространства и времени: субстанциальной и реляционной, статической и динамической.

Основоположником взгляда на материю, как состоящую из дискретных частиц был Демокрит.

Демокрит отрицал бесконечную делимость материи. Атомы различаются между собой только формой, порядком взаимного следования, и положением в пустом пространстве, а также величиной и зависящей от величины тяжестью. Они имеют бесконечно разнообразные формы с впадинами или выпуклостями. Демокрит называет атомы также «фигурами» или «видиками», из чего следует, что атомы Демокрита являются максимально малыми, далее неделимыми фигурами или статуэтками. В современной науке много спорили о том, являются ли атомы Демокрита физическими или геометрическими телами, однако сам Демокрит еще не дошел до различения физики и геометрии. Из этих атомов, движущихся в различных направлениях, из их «вихря» по естественной необходимости путем сближения взаимноподобных атомов образуются как отдельные целые тела, так и весь мир; движение атомов вечно, а число возникающих миров бесконечно.

Мир доступной человеку объективной реальности постоянно расширяется. Концептуальные формы выражения идеи структурных уровней материи многообразны.

Современная наука выделяет в мире три структурных уровня.

2. Микро, Макро, Мега миры.

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблю­даемых микрообъектов, пространственная разномерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечно­сти до 10 -24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соот­носима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоро­стей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и мил­лиардами лет.

И хотя на этих уровнях действуют свои специфические зако­номерности, микро-, макро - и мегамиры теснейшим образом взаи­мосвязаны.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время - порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

Микромир. Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за еди­ницу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свой­ства атома. В XIX в. Д. И. Менделеев построил систему хими­ческих элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элемен­тов.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона - отрица­тельно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Существовало несколько моделей строения атома.

В 1902 г. английский физик У. Томсон (лорд Кельвин) предложил первую модель атома - положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг».

В 1911 г. Э. Резерфорд предложил модель атома, которая на­поминала солнечную систему: в центре находится атомное яд­ро, а вокруг него по своим орбитам движутся электроны.

Ядро имеет положительный заряд, а электроны - отрица­тельный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электриче­ский заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

Обе эти модели оказались противоречивы.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характе­ристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, ос­нованную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколько стационарных со­стояний (говоря языком планетарной модели, несколько ста­ционарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;

2) при переходе электрона из одного стационарного состоя­ния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основа­нии представления об орбитах точечных электронов принципи­ально невозможно, поскольку таких орбит в действительности не существует.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это по­следнее усилие описать структуру атома на основе классиче­ской физики, дополняя ее лишь небольшим числом новых предположений.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь час­тично. Ответы на эти вопросы были получены в результате раз­вития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макро­мире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Макромир . В истории изучения природы можно выделить два этапа: донаучный и научный .

Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествозна­ния в XVI-XVII вв. Наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

Наиболее значимой для последующего развития естествен­ных наук была концепция дискретного строения материи атомизм, согласно которому все тела состоят из атомов - мельчайших в мире частиц.

Со становления классической механики начинается научный этап изучения природы.

Поскольку современные научные представления о струк­турных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начи­нать нужно с концепций классической физики.

Формирование научных взглядов на строение материи от­носится к XVI в., когда Г. Галилеем была заложена основа пер­вой в истории науки физической картины мира - механиче­ской. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методо­логию нового способа описания природы - научно-теоре­тического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, кото­рые становились предметом научного исследования. Галилей писал: «Никогда я не стану от внешних тел требовать чего-либо иного, чем величина, фигура, количество и более или менее быстрого движения для того, чтобы объяснить возникновение вкуса, запаха и звука » .

И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небес­ных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система.

В рамках механической картины мира, разработанной И. Нью­тоном и его последователями, сложилась дискретная (корпус­кулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц - атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.

Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсо­лютно постоянно и всегда пребывает в покое. Время представ­лялось как величина, не зависящая ни от пространства, ни от материи.

Движение рассматривалось как перемещение в пространст­ве по непрерывным траекториям в соответствии с законами механики.

Итогом ньютоновской картины мира явился образ Вселен­ной как гигантского и полностью детерминированного меха­низма, где события и процессы являют собой цепь взаимозави­симых причин и следствий.

Механистический подход к описанию природы оказался не­обычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рам­ках механистической картины мира.

Наряду с механической корпускулярной теорией, осуществ­лялись попытки объяснить оптические явления принципиально иным путем, а именно - на основе волновой теории, сформу­лированной X. Гюйгенсом. Волновая теория устанавливала ана­логию между распространением света и движением волн на по­верхности воды или звуковых волн в воздухе. В ней предпола­галось наличие упругой среды, заполняющей все пространство, - светоносного эфира. Исхо­дя из волновой теории X. Гюйгенс успешно объяснил отраже­ние и преломление света.

Другой областью физики, где механические модели оказа­лись неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М. Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и по­ложили начало электромагнитной картине мира.

Явление электромагнетизма открыл датский естествоиспы­татель X. К. Эрстед, который впервые заметил магнитное дей­ствие электрических токов. Продолжая исследования в этом направлении, М. Фарадей обнаружил, что временное измене­ние в магнитных полях создает электрический ток.

М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Его рабо­ты стали исходным пунктом исследований Дж. К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Максвелл «перевел» модель силовых линий Фарадея в математическую формулу. Понятие «поле сил» первоначально складывалось как вспомогательное математическое понятие. Дж. К. Максвелл придал ему физиче­ский смысл и стал рассматривать поле как самостоятельную физическую реальность: «Электромагнитное поле - это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии » .

Исхо­дя из своих исследований, Максвелл смог заключить, что световые волны представляют собой электромагнитные волны. Единая сущ­ность света и электричества, которую М. Фарадей предположил в 1845 г., а Дж. К. Максвелл теоретически обосновал в 1862 г., была экспериментально подтверждена немецким физиком Г. Герцем в 1888 г.

После экспериментов Г. Герца в физике окончательно ут­вердилось понятие поля не в качестве вспомогательной матема­тической конструкции, а как объективно существующей физи­ческой реальности. Был открыт качественно новый, своеобразный вид материи.

Итак, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля.

В результате же последующих революционных открытий в физике в конце прошлого и начале нынешнего столетий оказа­лись разрушенными представления классической физики о ве­ществе и поле как двух качественно своеобразных видах материи.

Мегамир . Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел.

Все существующие галактики входят в систему самого высо­кого порядка - Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15- 20 млрд. световых лет.

Понятия «Вселенная» и «Метагалактика» - очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие «Вселенная» обозначает весь существующий материальный мир; понятие «Метагалактика» - тот же мир, но с точки зрения его структуры - как упорядоченную систему га­лактик.

Строение и эволюция Вселенной изучаются космологией. Космология как раздел естествознания, находится на своеоб­разном стыке науки, религии и философии. В основе космо­логических моделей Вселенной лежат определенные мировоз­зренческие предпосылки, а сами эти модели имеют большое мировоззренческое значение.

В классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти та­кой же, как сейчас. Астрономия была статичной: изучались движения планет и комет, описывались звезды, создавались их классификации, что было, конечно, очень важно. Но вопрос об эволюции Вселенной не ставился.

Современные космологические модели Вселенной основы­ваются на общей теории относительности А. Эйнштейна, со­гласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свой­ства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами.

Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим А. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моделью Вселен­ной А. Эйнштейна мировое пространство однородно и изо­тропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсаль­ным космологическим отталкиванием.

Время существования Вселенной бесконечно, т.ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

Вселенная в космологической модели А. Эйнштейна стационарна, бесконечна во времени и безгранична в пространстве.

В 1922г. русский математик и геофизик А.А Фридман отбросил постулат классической космологии о стационарности Вселенной и получил решение уравнения Эйнштейна, описывающее Вселенную с “расширяющимся” пространством.

Поскольку средняя плотность вещества во Вселенной неизвестна, то сегодня мы не знаем, в каком из этих пространств Вселенной мы живем.

В 1927 г. бельгийский аббат и ученый Ж. Леметр связал “расширение” пространства с данными астрономических наблюдений. Леметр ввел понятие начала Вселенной как сингулярности (т.е. сверхплотного состояния) и рождения Вселенной как Большого взрыва.

В 1929 году американский астроном Э.П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется.

Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10 -12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 10 96 г/см 3 . В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров. От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва.

Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет. Г.А. Гамов предположил, что температура вещества была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на “эры”

Эра адронов . Тяжелые частицы, вступающие в сильные взаи­модействия.

Эра лептонов. Легкие частицы, вступающие в электромагнит­ное взаимодействие.

Фотонная эра. Продолжительность 1 млн. лет. Основная до­ля массы - энергии Вселенной - приходится на фотоны.

Звездная эра. Наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Идея творения имеет очень сложное обоснование и связана с квантовой кос­мологией. В этой модели описывается эволюция Вселенной на­чиная с момента 10 -45 с после начала расширения.

Сторонники инфляционной модели видят соответствие ме­жду этапами космической эволюции и этапами творения мира, описанными в книге Бытия в Библии .

В соответствии с инфляционной гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов.

Начало Вселенной определяется физиками-теоретиками как состояние квантовой супергравитации с радиусом Вселенной в 10 -50 см

Стадия инфляции. В результате квантового скачка Вселенная перешла в состояние возбужденного вакуума и в отсутствие в ней вещества и излучения интенсивно расширялась по экспо­ненциальному закону. В этот период создавалось само про­странство и время Вселенной. За период инфляционной стадии продолжительностью 10 -34 . Вселенная раздулась от невообра­зимо малых квантовых размеров 10 -33 до невообразимо больших 10 1000000 см, что на много порядков превосходит раз­мер наблюдаемой Вселенной - 10 28 см. Весь этот первоначаль­ный период во Вселенной не было ни вещества, ни излучения.

Переход от инфляционной стадии к фотонной. Состояние ложного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые, проаннигилировав, дали мощную вспышку излучения (света), осве­тившего космос.

Этап отделения вещества от излучения: оставшееся после ан­нигиляции вещество стало прозрачным для излучения, контакт между веществом и излучением пропал. Отделившееся от веще­ства излучение и составляет современный реликтовый фон, теоретически предсказанный Г. А. Гамовым и эксперименталь­но обнаруженный в 1965 г.

В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все бо­лее сложных структур - атомов (первоначально атомов водоро­да), галактик, звезд, планет, синтезу тяжелых элементов в не­драх звезд, в том числе и необходимых для создания жизни, возникновению жизни и как венца творения - человека.

Различие между этапами эволюции Вселенной в инфляци­онной модели и модели Большого взрыва касается только пер­воначального этапа порядка 10 -30 с, далее между этими моделя­ми принципиальных расхождений в понимании этапов косми­ческой эволюции нет.

Пока же эти модели с помощью знаний и фантазии можно рассчитывать на компьютере, а вопрос остается открытым.

Самая большая трудность для ученых возникает при объяс­нении причин космической эволюции. Если отбросить частно­сти, то можно выделить две основные концепции, объясняющие эволюцию Вселенной: концепцию самоорганизации и концепцию креационизма .

Для концепции самоорганизации материальная Вселенная яв­ляется единственной реальностью, и никакой другой реально­сти помимо нее не существует. Эволюция Вселенной описыва­ется в терминах самоорганизации: идет самопроизвольное упо­рядочивание систем в направлении становления все более сложных структур. Динамичный хаос порождает порядок.

В рамках концепции креационизма , т.е. творения, эволюция Вселенной связывается с реализацией программы, определяемой реальностью более высокого порядка, чем материальный мир. Сторонники креационизма обращают внимание на существова­ние во Вселенной направленного номогенца - развития от простых систем ко все более сложным и информационно ем­ким, в ходе которого создавались условия для возникновения жизни и человека. В качестве дополнительного аргумента при­влекается антропный принцип, сформулированный английскими астрофизиками Б. Карром и Риссом.

Среди современных физиков – теоретиков имеются сторонники, как концепции самоорганизации, так и концепции креационизма. Последние признают, что развитие фундаментальной теоретической физики делает насущной необходимостью разработку единой научно – технической картины мира, синтезирующей все достижения в области знания и веры.

Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.

Метагалактика – представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределение в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами.

Согласно современным представлениям, для метагалактики характерно ячеистая (сетчатая, пористая) структура. Существуют огромные объемы пространства (порядка миллиона кубических мегапарсек), в которых галактик пока не обнаружено.

Возраст Метагалактики близок к возрасту Вселенной, поскольку образование структуры приходиться на период, следующий за разъединением вещества и излучение. По современным данным, возраст Метагалактики оценивается в 15 млрд. лет.

Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.

По форме галактики условно распределяются на три типа: эллиптические , спиральные , неправильные .

Эллиптические галактики – обладают пространственной формой эллипсоида с разной степенью сжатия они являются наиболее простыми по структуре: распределение звезд равномерно убывает от центра.

Спиральные галактики – представлены в форме спирали, включая спиральные ветви. Это самый многочисленный вид галактик, к которому относится и наша Галактика – млечный путь.

Неправильные галактики – не обладают выраженной формой, в них отсутствует центральное ядро.

Некоторые галактики характеризуются исключительно мощным радиоизлучением, превосходящим видимое излучение. Это радиогалактики .

В ядре галактики сосредоточенны самые старые звезды, возраст которых приближается к возрасту галактики. Звезды среднего и молодого возраста расположены в диске галактики.

Звезды и туманности в пределах галактики движутся довольно сложным образом вместе с галактикой они принимают участие в расширении Вселенной, кроме того, они участвуют во вращении галактики вокруг оси.

Звезды. На современном этапе эволюции Вселенной веще­ство в ней находится преимущественно в звездном состоянии. 97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих других галактик, если не у большинства, «звездная субстанция» составляет более чем 99,9% их массы.

Возраст звезд меняется в достаточно большом диапазоне значений: от 15 млрд. лет, соответствующих возрасту Вселен­ной, до сотен тысяч - самых молодых. Есть звезды, которые образуются в настоящее время и находятся в протозвездной стадии, т.е. они еще не стали настоящими звездами.

Рождение звезд происходит в газово-пылевых туманностях под действием гравитационных, магнитных и других сил, бла­годаря которым идет формирование неустойчивых однородностей и диффузная материя распадается на ряд сгущений. Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды. Ос­новная эволюция вещества во Вселенной происходила и проис­ходит в недрах звезд. Именно там находится тот «плавильный тигель», который обусловил химическую эволюцию вещества во Вселенной.

На завершающем этапе эволюции звезды превращаются в инертные («мертвые») звезды.

Звезды не существуют изолированно, а образуют системы. Простейшие звездные системы - так называемые кратные сис­темы состоят из двух, трех, четырех, пяти и больше звезд, об­ращающихся вокруг общего центра тяжести.

Звезды объединены также в еще большие группы - звезд­ные скопления, которые могут иметь «рассеянную» или «шаровую» структуру. Рассеянные звездные скопления насчи­тывают несколько сотен отдельных звезд, шаровые скопления - многие сотни тысяч.

Ассоциации, или скопления звезд, также не являются неиз­менными и вечно существующими. Через определенное коли­чество времени, исчисляемое миллионами лет, они рассеивают­ся силами галактического вращения.

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спут­ников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц. К 1979 г. было известно 34 спутника и 2000 астероидов. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела - Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вра­щаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости. Большинство спутников планет (их лун) вращается в том же направлении и в большинстве слу­чаев в экваториальной плоскости своей планеты. Солнце, пла­неты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям. Закономерно и строение Солнечной системы: ка­ждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая.

Солнечная система образовалась примерно 5 млрд. лет назад, причем Солнце - звезда второго (или еще более позднего) поколения. Таким образом, Солнечная система возникла на продуктах жизнедеятельности звезд предыдущих поколений, скапливав­шихся в газово-пылевых облаках. Это обстоятельство дает ос­нование назвать Солнечную систему малой частью звездной пыли. О происхождении Солнечной системы и ее исторической эволюции наука знает меньше, чем необходимо для построения теории планетообразования.

Первые теории происхождения Солнечной системы были выдвинуты немецким философом И. Кантом и французским математиком П. С. Лапласом. Согласно этой гипотезе система планет вокруг Солнца об­разовалась в результате действия сил притяжения и отталкива­ния между частицами рассеянной материи (туманности), нахо­дящейся во вращательном движении вокруг Солнца.

Началом следующего этапа в развитии взглядов на образо­вание Солнечной системы послужила гипотеза английского фи­зика и астрофизика Дж. X. Джинса. Он предположил, что ко­гда-то Солнце столкнулось с другой звездой, в результате чего из него была вырвана струя газа, которая, сгущаясь, преобразо­валась в планеты.

Современные концепции происхождения планет Солнечной системы основываются на том, что нужно учитывать не только механические силы, но и другие, в частности электромагнит­ные. Эта идея была выдвинута шведским физиком и астрофи­зиком X. Альфвеном и английским астрофизиком Ф. Хойлом. В соответствии с современными представлениями, первона­чальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались не­большие части этого облака. Гравитационная сила стала при­тягивать остатки газа к образовавшейся звезде - Солнцу, но его магнитное поле остановило падающий газ на различных расстояниях - как раз там, где находятся планеты. Гравитаци­онная и магнитные силы повлияли на концентрацию и сгуще­ние падающего газа, и в результате образовались планеты. Ко­гда возникли самые крупные планеты, тот же процесс повто­рился в меньших масштабах, создав, таким образом, системы спутников.

Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невоз­можно. Во всех существующих теориях имеются противоречия и неясные места.

В настоящее время в области фундаментальной теоретиче­ской физики разрабатываются концепции, согласно которым объ­ективно существующий мир не исчерпывается материальным ми­ром, воспринимаемым нашими органами чувств или физическими приборами. Авторы данных концепций пришли к следующему выво­ду: наряду с материальным миром существует реальность высшего порядка, обладающая принципиально иной природой по сравнению с реальностью материального мира.

Вывод.

Издавна люди пытались найти объяснение многообразию и причудливости мира.

Изучение материи и её структурных уровней является необходимым условием формирования мировоззрения, независимо от того, окажется ли оно в конечном счёте материалистическим или идеалистическим.

Достаточно очевидно, что очень важна роль определения понятия материи, понимания последней как неисчерпаемой для построения научной картины мира, решения проблемы реальности и познаваемости объектов и явлений микро, макро и мега миров.

Список литературы:

1. Большая Советская энциклопедия

2. Карпенков С.Х. Концепции современного естествознания. М.: 1997

3. Философия

http://websites.pfu.edu.ru/IDO/ffec/ hilos-index.html

4. Владимиров Ю. С. Фундаментальная физика и религия. - М.: Архимед, 1993;

5. Владимиров Ю. С., Карнаухов А. В., Кулаков Ю.И. Введение в теорию физических структур и бинарную геометрофизику. - М.: Архимед, 1993.

6. Учебное пособие «Концепции современного естествознания»


Кузнецов Б.Т. От Галилея до Эйнштейна - М.: Наука, 1966. - С.38.

См.: Кудрявцев П.С. Курс истории физики. - М.: Просвещение, 1974. - С. 179.

См.: Дубнищева Т.Я. Указ. Соч. – С. 802 – 803.

См.: Гриб А.А. Большой взрыв: творение или происхождение? /В кн. Взаимо­связь физической и релиптозной картин мира. - Кострома: Изд-во МИИЦАОСТ, 1996. - С. 153-166.

Любое членение мира на составные части условны, как условна любая граница, разделяющая его части. Условны понятия и схемы, которые важны для нас как нечто, лежащее в основании созданной нами условности, которая потом властвует над нашим воображением по принципу созданной нами азбуки. Но именно из неё создается стройная система языка и понятий, утверждающих единство ее структуры, единство Мира, состоящего из ограниченного числа атомов в Периодическом законе.

Привычное деление мира на микро- и макромир также условно, поскольку слишком велики различия между объектами этих иерархических ступеней. Поэтому мы предложим еще одну систему, поскольку она нам кажется лучше. Другие же найдут в ней нечто такое, что заставит их построить свою, которая им покажется более отвечающей потребности исследователя в её детализации для осмысления картины Мира.

Под структурой (от латинского слова structure – строение, порядок, расположение) понимается закономерное пространственное расположение единичного в целом, как совокупность устойчивых связей элементарных частей объекта, обеспечивающих его целостность и тождественность самому себе, сохранение его основных свойств под влиянием внутренних и внешних сил.

Структура вселенной, например, представлена закономерным пространственным расположением и устойчивыми связями галактик, скоплений галактик и т.д. Структура галактик состоит из закономерно расположенных в них и устойчивых связей звезд и звездных скоплений. Структура звездной системы (например, Солнечной) представляет собой закономерное расположение и устойчивость связей планет, астероидов и т.д. Структура живого и неживого вещества представляет собой закономерное пространственное расположение и устойчивость связей атомов, молекул. Структура атома характеризуется закономерным расположением и устойчивостью связей частиц, расположенных вокруг ядра и внутри него.

Основными принципами системы являются:

    ее целостность (принципиальная несводимость свойств системы к сумме свойств ее элементов);

    структурность (закономерность связей и отношений элементов системы);

    взаимозависимость системы от коллективных внутренних (обусловленных структурой) сил и свойств окружающей среды;

    соподчиненность или иерархичность (каждый элемент системы может рассматриваться как подсистема свойств системы другого уровня);

    множественность описания каждой системы на основе множества слагающих ее подсистем, свойств, отношений этих свойств.

Структурные уровни организации материи могут быть представлены схемой, таблица 2.1.5-1.

Микромир неживой материи Квантовый мир. Мир частиц. Мир структуры атомов. Мир молекул, элементарных ячеек кристаллических структур и текстур, мир молекул жидкостей, газов, заряженных ионов плазмы.
Микромир живого вещества Мир структуры клетки , нуклеотидов и белков. Мир бактерий и вирусов.
Мезомир неживой материи Мир окружающей действительности человека, с которым связана его повседневная жизнь. Мир минералов, пород, слоев Земли, ландшафтов, биосферы. Искусственно созданный материальный мир. Мир Земли, как планеты Солнечной системы
Мезомир живого Мир насекомых, животных и растений, популяций, экосистем окружающих повседневную жизнь человека.
Макромир Мир структуры Солнечной системы: Солнца, планет и составляющих элементов структуры Солнечной системы.
Мегамир Мир структуры нашей галактики и Метагалактики (видимой части вселенной)
Супермир? Мир структуры взаимодействующих вселенных (?). Множество миров

Таблица 2.1.5-1

Как видим, такое членение на семь иерархических уровней мира условно, как условны и границы подразделений. Граница – это мир условностей, которые меняются под влиянием познания действительного мира. Например, границы микромира и макромира в существующей иерархии определяются разрешающей способностью глаза. С помощью созданных технических средств, приборов и других физических устройств человек смог заглянуть в структуру микромира, макромира и мегамира. Наличие супермира, как совокупности взаимодействующих вселенных, предполагается концепцией множественности миров, выдвинутой ещё Д.Бруно. Отсюда подсистемы окружающего нас материального мира слагают единую бесконечную в пространстве-времени систему или структуру Супермира.

Условность и необходимость подразделений мира на его составные элементы исходит из необходимости познать мир по частям и в целом. В процессе познания расширяются представления о границах подразделений. Например, границы мезомира в процессе развития человека и его сознания также непрерывно расширяются. На заре человеческой цивилизации – это он сам и его мир естественной окружающей его природной среды. Позже появляются искусственные орудия труда, машины, созданные самим человеком. Потом человек выходит в ближайший космос, и его окружающей действительностью являются объекты околоземного пространства, затем, в отдаленном будущем, всей Солнечной системы. То есть, постепенно мезомир расширяет свои границы до объектов макромира. С развитием космических путешествий за пределы Солнечной системы объектом окружающего мира может служить и мегамир. Пионер-10, творение человека, вышел за пределы Солнечной системы и уже находится в структуре Млечного Пути – нашей галактики.

Удивительно, но человеческий разум способен создавать и виртуальный мир, в котором может путешествовать, испытывать наслаждение от открытий, страдать, любить и ненавидеть. Граница виртуального и действительного мира также условна и скоротечна, насколько мы можем быстро перейти от теоретических рассуждений об устройстве мира к практическим реализациям идей на основе опыта.

Поразителен также факт неразделимости живой и неживой материи на всех уровнях ее организации. «Живое – от живого!». Гласит принцип Пастера-Редди. Но живое возникло из неживого и является следствием эволюции неживого!

Если существует микромир, мезомир и макромир живой материи, то логически Млечный путь (наша галактика), имея жизнь в Солнечной системе, сама является носителем жизни. Подобные рассуждения приведут нас к мысли о том, что жизнь является принадлежностью всей вселенной. Именно с появлением разума на Земле Метагалактика перешла в новое качество – стала разумной.

Составные элементы живого (атомы, молекулы) представляют собой каждый в отдельности неживое вещество. Если разобрать живое на атомы, то последующей операцией сборки атомов невозможно создать живое. Для этого необходима вся история эволюции живого и неживого действительного окружающего мира вселенной. В этом заключается один из парадоксов членения мира на живую и неживую его составляющие. Скорее надо предположить, что все вещество во вселенной просто пронизано элементами, способными к собственной самоорганизации под названием жизнь, чем разделять понятия живого и неживого. Сама же вселенная представляет собой развивающееся и непрерывно совершенствующееся единство бесконечно малого (нечто) и бесконечно большого (всего).

Материя структурирована не только движением, пространством, временем, формой, но и размерностью, уровнем организации. Но если движение, пространство и время в материальном мире являются непременным атрибутом сосуществования, то уровень организации материи есть классификационный принцип, удобный для расчленения (дробления) признаков существования материального мира с целью его дискретного познания путем последовательного приближения от частного к общему или наоборот.

Иерархические уровни организации вещества в естественнонаучных дисциплинах разные. В органическом мире они разделяются на классы, типы, группы, семейства, рода, виды. В неорганическом мире иерархические уровни отвечают комплексам, формациям, породам, минеральным видам и т.д. Причем границы этого разделения, повторяем, весьма условны и определяются необходимостью получения информации о структурированной единице (части), изучением свойства которой, трансляции её в четырёхмерном пространстве мы можем понять, как устроено целое.

Иерархия (от греч. hieros - священный и arche – власть). Расположение совокупности элементов в порядке от высшего к низшему рангу. Способ устройства сложных систем, при котором звенья системы распределены по различным уровням в соответствии с заданным критерием.

Два иерархических уровня организации материи – микро- и макромир (микрокосм и макрокосм) издавна разграничиваются естественными науками, поскольку в них проявляются формы движения несколько по-иному. Возникают новые взаимодействия. Но и это деление материального мира является условным. Ибо макромир состоит из структурированного вещества микромира бесконечно транслируемого в пространстве-времени всё существующее и будущее многообразие явлений, состояний, движений объектов.

Уже в древности существовала идея о микро- и макрокосме. Микрокосм – мир человека, макрокосм – вся Природа. Это как бы живые существа, созданные по единому образцу и наделенные единой душой… Уже в древности существовал принцип, что человек является мерой всех вещей, поскольку люди видели в строении его тела гармонию, и эту гармонию переносили на измеряемый ими мир через пропорции человеческого тела. Так было создано одно из чудес света – Парфенон, над разгадкой гармонии которого так долго бьются строители и архитекторы.

Микрокосм и макрокосм (от греч., большой мир - вселенная и малый мир – человек). Натурфилософы XVI в., в особенности Парацельс, рассматривали вселенную как человеческий организм в увеличенном виде, а человека как вселенную в миниатюре и выводили отсюда, что между вселенной и человеком существует такая же связь, как и между членами одного телесного организма, и почему, например, звезды могут иметь влияние на судьбу человека.

Последовательность расположения объектов во Вселенной по структурным уровням материи (СУМ) предполагает существование структурной организации сложных многоуровенных систем. Она проявляется в упорядочении взаимодействий между СУМ от высшего к низшему порядку. Предложена в работе Б.П. Иванова , таблица 2.1.5-2.

Исходя из общего принципа единства мироустройства, современная наука на основе экспериментальных достижений описывает материю в диапазоне от 1∙10 -18 до 1∙10 26 м. Она проявляет себя как в форме конкретных объектов, так и среды.

Поиски фундаментальных закономерностей, которые бы позволили структурировать мир таким образом, чтобы стало возможным предсказание любого исторического уровня его организации, продолжаются. С развитием квантовой механики, мир неожиданно представился «Летучим Голландцем», когда оказалось нельзя однозначно определиться в его реальных границах ни в пространстве, ни во времени. В границах так необходимых нам в привычном для нас макромире в силу двойственности природы микромира . Мир в пространстве микромира оказался «размазанным», а границы его выглядели настолько условными, что возникла необходимость для описания взаимодействий между его частицами прибегнуть к виртуальным частицам, «рождение» которых одновременно бы совпадало с их «смертью». И притом они успевали быть передаточным звеном такого взаимодействия.

По представлениям Б.П.Иванова материя оказывается «не размазана», а группируется в пространстве определенным образом. Система материи состоит из сгустка (ядра) и окружающего его физического поля, находящиеся в определенных отношениях и связях друг с другом, образующих некую целостность (единство). Такая система материи названа им организационной формой материи (ОФМ) или локализованным объектом вселенной. Автор в строении материи проводит аналогию между строением частиц, атомов, звезд, галактик. То есть, на любом уровне организации материи, будь-то частица, атом, звезда или галактика определенно существует ядро и физическое поле, объединенные в одну единую систему организационной формы материи, которая является фундаментальной единицей всего известного мироздания, включая вселенную.

Группу организованных форм материи, имеющих одно общее свойство, например, электрический заряд у ядер атомов элементов таблицы Д.И.Менделеева, автор объединяет в один структурный уровень материи (СУМ).

Всю совокупность СУМ он вмещает в следующую иерархию, состоящую из элементов:

  • элементарные частицы;
  • ядра;
  • атомы;
  • молекулы;
  • кристаллы;
  • пыль;
  • микрометеороиды;
  • метеороиды;
  • кометы;
  • астероиды;
  • планеты;
  • звезды; скопления звезд;
  • шаровые скопления;
  • галактики;
  • скопления галактик;
  • сверхскопления галактик;

Метагалактика.

  • Это также весьма условная иерархия. Поскольку она может быть дополнена, например, последовательным рядом:
  • кристалл, элементарная ячейка которого состоит из атомов или ионов, транслируемых по кристаллографическим направлениям;
  • минерал (состоящий из совокупности атомов, ионов, молекул);
  • порода (как совокупность слагающих ее различных минералов);
  • пыль (как совокупность кристаллов, минералов, пород разного состава) и т.д.;
  • формации, как сообщество геологических тел, объединяемые в парагенетическом, генетическом или в каком-то ином отношении, состоящие из пород, руд, минералов и т.д.

Материальным объектом галактики являются и релятивистские объекты так называемых черных дыр и т.д.

Тем не менее, в предлагаемой иерархии Б.П.Иванова прослеживается определенная закономерность. Между структурными уровнями материи наблюдаются скачкообразные изменения их обобщенных качественных характеристик, что позволило автору использовать в этой иерархии модель «квантовой лестницы», на ступеньках которой размещаются структурные уровни материи.

В пределах одной ступени структурный уровень материи по Б.П.Иванову состоит из трех подуровней. В каждом подуровне наблюдается регулярная повторяемость свойств объектов по мере роста радиуса ядра ОФМ вследствие семикратной бифуркации. Свойство структурности в иерархии СУМ наследуют структурные уровни нижних ступеней. Например, Метагалактика состоит из сверхскоплений галактик, любая галактика в свою очередь состоит из звездных скоплений и т.д. вплоть к элементарным частицам. То есть в основе материи лежит понятие об элементарной части, которая повторяется, транслируется в пространстве-времени, в результате чего формируется целое: вещество и структура мира.

Структурные уровни организации материи по Б.П.Иванову

Номер СУМ Структурные уровни материи Верхние и нижние границы радиуса ядер ОФМ, м Средние геометрические радиусы скоплений ОФМ,м Кинетическая энергия скоплений ОФМ, Дж Собственные частоты скоплений, Гц
21.0 К вышестоящим уровням материи
20.0 Квазары 6,88·10 41 - 5,38·10 39 6,08·10 40 4,5·10 61 2,53·10 -60
19.0 Радиогалактики 4,2·10 37 4,25·10 38 3,12·10 58 3,67·10 -57
18.0 Сверхскопления галактик 3,2810 35 3,71·10 36 2,15·10 55 5,32·10 -54
17.0 Скопления галактик 2,56·10 33 2,9·10 34 1,49·10 52 7,7·10 -51
16.0 Кратные галактики 2,0·10 31 2,26·10 32 1,03·10 48 1,11·10 -47
15.0 Гипергалактики 1,56·10 29 1,17·10 30 7,1·10 45 1,61·10 -44
14.0 Галактики 1,22·10 27 1,38·10 28 4,9·10 42 2,32·10 -41
13.0 Субгалактики 9,55·10 24 1,08·10 26 3,38·10 39 3,39·10 -38
12.0 Гипершаровые скопления 7,46·10 22 8,44·10 23 2,33·10 36 4,9·10 -35
11.0 Шаровые скопления звезд 5,83·10 20 6,59·10 21 1,61·10 33 7,1·10 -32
10.0 Субшаровые скопления звезд 4,55·10 18 5,1·10 19 1,11·10 30 1,03·10 -28
9.0 Рассеянные скопления звезд 3,56·10 16 4,0·10 17 7,69·10 26 1,49·10 25
8.0 Кратные звезды 2,78·10 14 3,14·10 15 5,3·10 23 2,16·10 -22
7.0 Гиперзвезды 2,17·10 12 2,43·10 13 3,66·10 20 3,1·10 -19
6.0 Звезды 1,7·10 10 1,92·10 11 2,53·10 17 4,52·10 -16
5.0 Субзвезды 1,33·10 8 1,5·10 9 1,75·10 14 6,55·10 -13
4.0 Планеты 1,04·10 6 1,17·10 7 1,2·10 11 9,49·10 -10
3.0 Астероиды 8092 9,15·10 4 8,33·10 7 1,37·10 -6
2.0 Кометы 63,22 715 5,76·10 4 1,99·10 -3
1.0 Глыбы-гиперметеороиды 0,494 5,588 39,75 2,88
.0.1 Гравий-метеороиды 0,39·10 -3 4,36·10 -2 2,74·10 -2 4172
.0.2 Песок-миллиметеороиды 3,0·10 -5 3,41·10 -4 1,89·10 -5 6,04·10 6
.0.3 Алеврит-микрометеороиды (пыль) 2,35·10 -7 2,66·10 -6 1,3·10 -8 1,99·10 9
.0.4 Кристалл 1,84·10 -9 2,08·10 -8 9,04·10 -12 1,27·10 13
.0.5 Кластеры 1,44·10 -11 1,63·10 -10 6,24·10 -15 1,83·10 16
.0.6 Молекулы 1,12·10 -13 1,27·10 -12 4,31·10 -18 2,66·10 19
.0.7 Атомы 8,77·10 -16 9,95·10 -15 2,98·10 -21 3,85·10 22
.0.8 Нуклиды 6,85·10 -18 7,76·10 -17 2,05·10 -24 5,57·10 25
.0.9 Протоны 5,35·10 -20 6,06·10 -19 1,42·10 -27 8,0·10 28
.0.10 Электроны 4,18·10 -22 4,73·10 -21 9,8·10 -31 1,17·10 32
.0.11 Позитроны 3,27·10 -24 3,7·10 -23 6,77·10 -34 1,69·10 35
.0.12 Субэлектроны 2,55·10 -26 2,9·10 -25 4,67·10 -37 2,45·10 38
.0.13 γ- кванты 1,7·10 -28 2,26·10 -27 3,22·10 -40 3,55·10 41
.0.14 Рентгеновские лучи 1,56·10 -30 1,76·10 -29 2,22·10 -43 5,14·10 44
.0.15 Видимые лучи 1,22·10 -32 1,38·10 -31 1,53·10 -46 7,44·10 47
.0.16 СВЧ и ВЧ 9,5·10 -35 1,08·10 -33 1,06·10 -49 1,08·10 51
.0.17 Средние радиоволны 7,43·10 -37 8,4·10 -36 7,3·10 -53 1,56·10 54
.0.18 Длинные радиоволны 5,80·10 -39 6,57·10 -38 5,05·10 -56 2,26·10 57
.0.19 Низкие частоты 4,50·10 -41 5,1·10 -40 3,49·10 -62 3,27·10 60
.0.20 Инфракрасные частоты 3,50·10 -43 4,0·10 -42 2,41·10 -62 4,74·10 63
.0.21 21 cлой (СУМ) 2,77·10 -45 3,1·10 -44 1,66·10 -65 6,85·10 66
.0.22 22 2,16·10 -47 2,4·10 -46 1,15·10 -68 9,94·10 69
.0.23 23 1,69·10 -49 1,9·10 -48 7,94·10 -72 1,44·10 73
.0.24 24 1,32·10 -51 1,5·10 -50 5,48·10 -75 2,08·10 76
.0.25 25 1,0·10 -53 1,2·10 -52 3,78·10 -78 3,02·10 79
.0.26 26 8,00·10 -56 9,1·10 -55 2,61·10 -81 4,37·10 82
.0.27 27 6,30·10 -57 7,1·10 -57 1,8·10 -84 6,33·10 85
.0.28 28 4,90·10 -60 5,5·10 -59 1,25·10 -87 9,17·10 88
К внутренним структурным уровням материи и к ее эфиру

Таблица 2.1.5-2

По выше приведенным табличным данным Б.П.Ивановым граница микрокосма (внутреннего мира) и макрокосма определяется числом после.0., .0.1 и т.д. В микрокосм, таким образом, вошли структуры, начиная от гравийных частиц, песка, алеврита и меньшей размерности. Достоинство выше приведенной структурной иерархии на основе идеи организационной формы материи заключается в возможности определения дискретных границ размерности материального мира путем деления на коэффициент подобия равным числу 128 (для микрокосма) и путем умножения на этот же коэффициент (для макрокосма). Таким образом, микромир по Б.П. Иванову вполне дискретен и поддается граничному структурированию, но на границах микроструктур их свойства меняются скачкообразно.

Макрокосм для Земли в этой классификации начинается с околоземного пространства и распространяется на всю внешнюю часть вселенной.

Иерархический подход Б.П.Иванова хорош для описания научной картины мира. Он несколько будет смущать обывателя в той части, что подобное членение материального мира, хотя и охватывает все многообразие закономерно изменяющихся его свойств и структур, но не дает возможности образно выделить иерархическую соподчиненность, с которой обычно имеет дело сознание человека. Он чаще меряет не числом, а соотносимым масштабом, способностью разрешения глаза или осознанием размерности на уровне ощущений.

В концепции «квантового рождения вселенной», выдвинутой в 1973 г. П. И. Фоминым и Е. Трионом, причинно-обусловленные связи на всех структурных уровнях Мира наблюдается в «начальном» состоянии вселенной, которое представляло собой физический вакуум. А причиной наблюдаемого ныне космологического расширения могла стать антигравитирующая способность вакуума, вызывающего отталкивание между «внесенными» в него частицами вещества. И для него давление отрицательно: p = - ε. Однако основным камнем преткновения квантового рождения вселенной заключается в необходимости объяснения, почему она выглядит изотропной при расширении из состояния сингулярности.

Первое поколение космологических моделей соответствовало однородному и изотропному распределению материи, то есть описывало не реальное распределение вещества, а – усредненное по ячейкам, размер которых порядка межгалактических расстояний, с начальной сингулярностью – состоянием с бесконечной плотностью. Эволюция мира в этих моделях зависит от суммарной плотности вещества ρ в настоящую эпоху. И если ρ < ρ крит. (~10 -25 г/см 3), то пространство бесконечно («открытый мир») и наблюдающееся ныне космологическое расширение неограниченно; в случае ρ > ρ крит. – пространство конечно, а расширение, спустя некоторое время, должно смениться сжатием («замкнутый мир»). Открыт или замкнут, в рамках данных моделей Мир (Метагалактика) в настоящее время не ясно, так как современные наблюдательные оценки свидетельствуют о том, что ρ / ρ крит ~1.

Второе поколение космологических моделей. Учет неоднородностей реального распределения вещества в Метагалактике привел к несколько иной картине её эволюции. Эти модели противоречат наблюдаемой глобальной изотропии реликтового (фонового) излучения. Потому как любое сколь угодно малое отклонение от изотропности быстро растет с расширением вселенной, и она не может открываться в пространстве изотропно, поскольку расширение идет быстрее, чем распространяется электромагнитное излучение.

В моделях третьего поколения предусматривается «первичное квантование» параметров модели (приближение к полной квантовой модели мира). Однако модели третьего и второго поколений не позволяют объяснить изотропность Метагалактики, включая изотропность реликтового излучения, за исключением его флуктуации – дипольная компонента.


Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта. Применяя системный подход, естествознание не просто выделяет типы материальных систем, а раскрывает их связь и соотношение.

В науке выделяются три уровня строения материи:

Микромир (элементарные частицы, ядра, атомы, молекулы) - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от десяти в минус восьмой степени до десяти в минус шестнадцатой степени см, а время жизни - от бесконечности до десяти в минус двадцать четвертой степени сек.

Макромир (макромолекулы, живые организмы, человек, объекты техники и т.д.) - мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир (планеты, звезды, галактика) - мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро- и мегамиры теснейшим образом взаимосвязаны. Фундаментальные мировые константы определяют масштабы иерархической структуры материи нашего мира. Очевидно, что сравнительно небольшое их изменение и должно приводить к формированию качественно иного мира, в котором стало бы невозможным образование ныне существующих микро-, макро - и мегаструктур и в целом высоко-организованных форм живой материи. Определенные их значения и взаимоотношения между ними, по существу, и обеспечивает структурную устойчивость нашей Вселенной. Поэтому проблема, казалось бы, абстрактных мировых констант имеет глобальное мировоззренческое значение.

Материя

Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. Материя включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все те, которые в принципе могут быть познаны в будущем на основе совершенствования средств наблюдения и эксперимента. В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность. Для обозначения целостности объектов в науке было выработано понятие системы.

Материя как объективная реальность включает в себя не только вещество в четырех его агрегатных состояниях (твердом, жидком, газообразном, плазменном), но и физические поля (электромагнитное, гравитационное, ядерное и т.д.), а также их свойства, отношения, продукты взаимодействия. Входит в нее и антивещество (совокупность античастиц: позитрон, или антиэлектрон, антипротон, антинейтрон), недавно открытое наукой. Антивещество ни в коем случае не антиматерия. Антиматерии вообще быть не может. Движение и материя органически и нерасторжимо связаны друг с другом: нет движения без материи, как нет и материи без движения. Иначе говоря, нет в мире неизменных вещей, свойств и отношений. Одни формы или виды сменяются другими, переходят в другие – движение постоянно. Покой – диалектически исчезающий момент в беспрерывном процессе изменения, становления. Абсолютный покой равнозначен смерти, а вернее – несуществованию. И движение, и покой с определенностью фиксируются лишь по отношению к какой-то системе отсчета.

Движущаяся материя существует в двух основных формах – в пространстве и во времени. Понятие пространства служит для выражения свойства протяженности и порядка сосуществования материальных систем и их состояний. Оно объективно, универсально и необходимо. В понятии времени фиксируется длительность и последовательность смены состояний материальных систем. Время объективно, неотвратимо и необратимо.

Основоположником взгляда на материю, как состоящую из дискретных частиц был Демокрит. Демокрит отрицал бесконечную делимость материи. Атомы различаются между собой только формой, порядком взаимного следования, и положением в пустом пространстве, а также величиной и зависящей от величины тяжестью. Они имеют бесконечно разнообразные формы с впадинами или выпуклостями. В современной науке много спорили о том, являются ли атомы Демокрита физическими или геометрическими телами, однако сам Демокрит еще не дошел до различения физики и геометрии. Из этих атомов, движущихся в различных направлениях, из их "вихря" по естественной необходимости путем сближения взаимноподобных атомов образуются как отдельные целые тела, так и весь мир; движение атомов вечно, а число возникающих миров бесконечно. Мир доступной человеку объективной реальности постоянно расширяется. Концептуальные формы выражения идеи структурных уровней материи многообразны. Современная наука выделяет в мире три структурных уровня.

Структурные уровни организации материи

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни - от бесконечности до 10-24 с. Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро- и мегамиры теснейшим образом взаимосвязаны.

Понятно, что границы микро - и макромира подвижны, и не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты, построены из микрообъектов и в основе макро - и мегаявлений лежат микроявления. Это наглядно видно на примере построения Вселенной из взаимодействующих элементарных частиц в рамках космомикрофизики. На самом деле мы должны понимать, что речь идет лишь о различных уровнях рассмотрения вещества. Микро-, макро - и мегаразмеры объектов соотносятся друг с другом как макро/микро - мега/макро.

В классической физике отсутствовал объективный критерий отличия макро - от микрообъекта. Это отличие ввел М. Планк: если для рассматриваемого объекта минимальным воздействием на него можно пренебречь, то это макрообъекты, если нельзя – это микрообъекты. Из протонов и нейтронов образуются ядра атомов. Атомы объединяются в молекулы. Если двигаться дальше по шкале размеров тел, то далее следует обычные макротела, планеты и их системы, звезды скопления галактик и метагалактик, то есть можно представить переход от микро-, макро - и мега - как в размерах, так и моделях физических процессов.

Микромир

Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в.Д.И. Менделеев построил систему химических элементов, основанную на их атомном весе. История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален. Обе эти модели оказались противоречивы.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров. Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколько стационарных состояний (говоря языком планетарной модели, несколько стационарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;

2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует. Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Макромир

В истории изучения природы можно выделить два этапа: донаучный и научный. Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествознания в XVI-XVII вв. Наблюдаемые природные явления объяснялись на основе умозрительных философских принципов. Наиболее значимой для последующего развития естественных наук была концепция дискретного строения материи атомизм, согласно которому все тела состоят из атомов - мельчайших в мире частиц.

Со становления классической механики начинается научный этап изучения природы. Поскольку современные научные представления о структурных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начинать нужно с концепций классической физики.

Формирование научных взглядов на строение материи относится к XVI в., когда Г. Галилеем была заложена основа первой в истории науки физической картины мира - механической. Он открыл закон инерции, и разработал методологию нового способа описания природы - научно-теоретического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, которые становились предметом научного исследования.

И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система. В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (корпускулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц - атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.

Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсолютно постоянно и всегда пребывает в покое. Время представлялось как величина, не зависящая ни от пространства, ни от материи. Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики. Итогом ньютоновской картины мира явился образ Вселенной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий.

Механистический подход к описанию природы оказался необычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рамках механистической картины мира.

Наряду с механической корпускулярной теорией, осуществлялись попытки объяснить оптические явления принципиально иным путем, а именно - на основе волновой теории. Волновая теория устанавливала аналогию между распространением света и движением волн на поверхности воды или звуковых волн в воздухе. В ней предполагалось наличие упругой среды, заполняющей все пространство, - светоносного эфира. Исходя из волновой теории X. Гюйгенс успешно объяснил отражение и преломление света.

Другой областью физики, где механические модели оказались неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М. Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и положили начало электромагнитной картине мира. Явление электромагнетизма открыл датский естествоиспытатель X.К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М. Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток.

М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Максвелл "перевел" модель силовых линий Фарадея в математическую формулу. Понятие "поле сил" первоначально складывалось как вспомогательное математическое понятие. Дж. К. Максвелл придал ему физический смысл и стал рассматривать поле как самостоятельную физическую реальность: "Электромагнитное поле - это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии"

Исходя из своих исследований, Максвелл смог заключить, что световые волны представляют собой электромагнитные волны. Единая сущность света и электричества, которую М. Фарадей предположил в 1845 г., а Дж.К. Максвелл теоретически обосновал в 1862 г., была экспериментально подтверждена немецким физиком Г. Герцем в 1888 г. После экспериментов Г. Герца в физике окончательно утвердилось понятие поля не в качестве вспомогательной математической конструкции, а как объективно существующей физической реальности. Был открыт качественно новый, своеобразный вид материи. Итак, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля. В результате же последующих революционных открытий в физике в конце прошлого и начале нынешнего столетий оказались разрушенными представления классической физики о веществе и поле как двух качественно своеобразных видах материи.

Мегамир

Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Все существующие галактики входят в систему самого высокого порядка - Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15 - 20 млрд. световых лет. Понятия "Вселенная" и "Метагалактика" - очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие "Вселенная" обозначает весь существующий материальный мир; понятие "Метагалактика" - тот же мир, но с точки зрения его структуры - как упорядоченную систему галактик. Строение и эволюция Вселенной изучаются космологией. Космология как раздел естествознания, находится на своеобразном стыке науки, религии и философии. В основе космологических моделей Вселенной лежат определенные мировоззренческие предпосылки, а сами эти модели имеют большое мировоззренческое значение.

В классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти такой же, как сейчас. Астрономия была статичной: изучались движения планет и комет, описывались звезды, создавались их классификации, что было, конечно, очень важно. Но вопрос об эволюции Вселенной не ставился. Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами.

Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим А. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием. Время существования Вселенной бесконечно, т. ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

Вселенная в космологической модели А. Эйнштейна стационарна, бесконечна во времени и безгранична в пространстве. В 1922г. русский математик и геофизик А. А Фридман отбросил постулат классической космологии о стационарности Вселенной и получил решение уравнения Эйнштейна, описывающее Вселенную с “расширяющимся” пространством. Поскольку средняя плотность вещества во Вселенной неизвестна, то сегодня мы не знаем, в каком из этих пространств Вселенной мы живем.

В 1927 г. бельгийский аббат и ученый Ж. Леметр связал “расширение” пространства с данными астрономических наблюдений. Леметр ввел понятие начала Вселенной как сингулярности (т.е. сверхплотного состояния) и рождения Вселенной как Большого взрыва. Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10-12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 1096 г/см 3 . В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров. От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва.

Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на “эры”.

Эра адронов. Тяжелые частицы, вступающие в сильные взаимодействия.

Эра лептонов. Легкие частицы, вступающие в электромагнитное взаимодействие.

Фотонная эра. Продолжительность 1 млн. лет. Основная доля массы - энергии Вселенной - приходится на фотоны.

Звездная эра. Наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик. Затем разворачивается грандиозная картина образования структуры Метагалактики.

В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Сторонники инфляционной модели видят соответствие между этапами космической эволюции и этапами творения мира, описанными в книге Бытия в Библии. В соответствии с инфляционной гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов.

Стадия инфляции. В результате квантового скачка Вселенная перешла в состояние возбужденного вакуума и в отсутствие в ней вещества и излучения интенсивно расширялась по экспоненциальному закону. В этот период создавалось само пространство и время Вселенной. Вселенная раздулась от невообразимо малых квантовых размеров 10-33 до невообразимо больших 101000000 см, что на много порядков превосходит размер наблюдаемой Вселенной - 1028 см. Весь этот первоначальный период во Вселенной не было ни вещества, ни излучения. Переход от инфляционной стадии к фотонной. Состояние ложного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые, проаннигилировав, дали мощную вспышку излучения (света), осветившего космос.

В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все более сложных структур - атомов (первоначально атомов водорода), галактик, звезд, планет, синтезу тяжелых элементов в недрах звезд, в том числе и необходимых для создания жизни, возникновению жизни и как венца творения - человека. Различие между этапами эволюции Вселенной в инфляционной модели и модели Большого взрыва касается только первоначального этапа порядка 10-30 с, далее между этими моделями принципиальных расхождений в понимании этапов космической эволюции нет. Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.

Метагалактика – представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределение в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами. Согласно современным представлениям, для метагалактики характерно ячеистая (сетчатая, пористая) структура. Существуют огромные объемы пространства (порядка миллиона кубических мегапарсек), в которых галактик пока не обнаружено. Возраст Метагалактики близок к возрасту Вселенной, поскольку образование структуры приходиться на период, следующий за разъединением вещества и излучение. По современным данным, возраст Метагалактики оценивается в 15 млрд. лет.

Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию. По форме галактики условно распределяются на три типа: эллиптические, спиральные, неправильные. Эллиптические галактики – обладают пространственной формой эллипсоида с разной степенью сжатия они являются наиболее простыми по структуре: распределение звезд равномерно убывает от центра. Спиральные галактики – представлены в форме спирали, включая спиральные ветви. Это самый многочисленный вид галактик, к которому относится и наша Галактика – млечный путь. Неправильные галактики – не обладают выраженной формой, в них отсутствует центральное ядро. В ядре галактики сосредоточенны самые старые звезды, возраст которых приближается к возрасту галактики. Звезды среднего и молодого возраста расположены в диске галактики. Звезды и туманности в пределах галактики движутся довольно сложным образом вместе с галактикой они принимают участие в расширении Вселенной, кроме того, они участвуют во вращении галактики вокруг оси.

Звезды. На современном этапе эволюции Вселенной вещество в ней находится преимущественно в звездном состоянии.97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих других галактик, если не у большинства, "звездная субстанция" составляет более чем 99,9% их массы. Возраст звезд меняется в достаточно большом диапазоне значений: от 15 млрд. лет, соответствующих возрасту Вселенной, до сотен тысяч - самых молодых. Рождение звезд происходит в газово-пылевых туманностях под действием гравитационных, магнитных и других сил, благодаря которым идет формирование неустойчивых однородностей и диффузная материя распадается на ряд сгущений. Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды. На завершающем этапе эволюции звезды превращаются в инертные ("мертвые") звезды.

Звезды не существуют изолированно, а образуют системы. Простейшие звездные системы - так называемые кратные системы состоят из двух, трех, четырех, пяти и больше звезд, обращающихся вокруг общего центра тяжести. Звезды объединены также в еще большие группы - звездные скопления, которые могут иметь "рассеянную" или "шаровую" структуру. Рассеянные звездные скопления насчитывают несколько сотен отдельных звезд, шаровые скопления - многие сотни тысяч. Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спутников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц.

К 1979 г. было известно 34 спутника и 2000 астероидов. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела - Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вращаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости. Большинство спутников планет вращается в том же направлении и в большинстве случаев в экваториальной плоскости своей планеты. Солнце, планеты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям. Закономерно и строение Солнечной системы: каждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая.

Солнечная система образовалась примерно 5 млрд. лет назад, причем Солнце - звезда второго поколения. Таким образом, Солнечная система возникла на продуктах жизнедеятельности звезд предыдущих поколений, скапливавшихся в газово-пылевых облаках. Это обстоятельство дает основание назвать Солнечную систему малой частью звездной пыли. О происхождении Солнечной системы и ее исторической эволюции наука знает меньше, чем необходимо для построения теории планетообразования.

Современные концепции происхождения планет Солнечной системы основываются на том, что нужно учитывать не только механические силы, но и другие, в частности электромагнитные. Эта идея была выдвинута шведским физиком и астрофизиком X. Альфвеном и английским астрофизиком Ф. Хойлом. В соответствии с современными представлениями, первоначальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались небольшие части этого облака. Гравитационная сила стала притягивать остатки газа к образовавшейся звезде - Солнцу, но его магнитное поле остановило падающий газ а различных расстояниях - как раз там, где находятся планеты. Гравитационная и магнитные силы повлияли на концентрацию и сгущение падающего газа, и в результате образовались планеты. Когда возникли самые крупные планеты, тот же процесс повторился в меньших масштабах, создав, таким образом, системы спутников.

Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невозможно. Во всех существующих теориях имеются противоречия и неясные места. В настоящее время в области фундаментальной теоретической физики разрабатываются концепции, согласно которым объективно существующий мир не исчерпывается материальным миром, воспринимаемым нашими органами чувств или физическими приборами. Авторы данных концепций пришли к следующему выводу: наряду с материальным миром существует реальность высшего порядка, обладающая принципиально иной природой по сравнению с реальностью материального мира.

Издавна люди пытались найти объяснение многообразию и причудливости мира. Изучение материи и её структурных уровней является необходимым условием формирования мировоззрения, независимо от того, окажется ли оно в конечном счёте материалистическим или идеалистическим. Достаточно очевидно, что очень важна роль определения понятия материи, понимания последней как неисчерпаемой для построения научной картины мира, решения проблемы реальности и познаваемости объектов и явлений микро, макро и мега миров.

Все вышеизложенные революционные открытия в физике перевернули ранее существующие взгляды на мир. Исчезла убежденность в универсальности законов классической механики, ибо разрушились прежние представления о неделимости атома, о постоянстве массы, о неизменности химических элементов и т.д. Теперь уже вряд ли можно найти физика, который считал бы, что все проблемы его науки можно решить с помощью механических понятий и уравнений.

Рождение и развитие атомной физики, таким образом, окончательно сокрушило прежнюю механистическую картину мира. Но классическая механика Ньютона при этом не исчезла. По сей день она занимает почетное место среди других естественных наук. С ее помощью, например, рассчитывается движение искусственных спутников Земли, других космических объектов и т.д. Но трактуется она теперь как частный, случай квантовой механики, применимый для медленных движений и больших масс объектов макромира.