Невозможность деления угла на три равные части. Деление прямого угла на три равные части или трисекция угла I. Организационный момент

Деление угла пополам (рисунок 26, а). Из вершиныВ углаABC произвольным радиусом R 1 проводят дугу до пересечения ее со сторонами угла в точках М и N . Затем из точек M и N проводят дуги радиусом > R 1 до взаимного пересечения их в точке D . Прямая BD разделит данный угол пополам.

Деление угла на 4, 8 и т. д. равных частей осуществляется последовательным делением пополам каждой части угла (рисунок 26, б).

Рисунок 26

В том случае, когда угол задан сторонами, не пересекающимися в пределах чертежа, например AB иCD на рисунке 26, в, деление угла пополам выполняют так. На произвольном, но одинаковом расстоянииl от сторон угла проводят прямыеKL || AB иMN || CD и продолжают их до пересечения в точкеО . Полученный уголL ON делят пополам прямойOF . ПрямаяOF разделит пополам также и заданный угол.

Деление прямого угла на три равные части (рисунок 27). Из вершины прямого угла – точкиВ проводят дугу произвольным радиусомR до пересечения ее с обеими сторонами угла в точкахA иC . Тем же радиусомR из точекA иС проводят дуги до пересечения с дугойAC в точкахМ иN . Прямые, проведенные через вершину углаВ и точкиМ иN , разделят прямой угол на три равные части.

Рисунок 27

2.4 Деление окружности на равные части, построение правильных многоугольников

2.4.1 Деление окружности на равные части и построение правильных вписанных многоугольников

Для деления окружности пополам достаточно провести любой ее диаметр. Два взаимно перпендикулярных диаметра разделят окружность на четыре равные части (рисунок 28, а). Разделив каждую четвертую часть пополам, получают восьмые части, а при дальнейшем делении – шестнадцатые, тридцать вторые части и т. д. (рисунок 28, б). Если соединить прямыми точки деления, то можно получить стороны правильного вписанного квадрата (а 4 ), восьмиугольника (а 8 ) и т. д. (рисунок 28, в).

Рисунок 28

Деление окружности на 3, 6, 12 и т, д. равных частей, а также построение соответствующих правильных вписанных многоугольников осуществляют следующим образом. В окружности проводят два взаимно перпендикулярных диаметра1–2 и3–4 (рисунок 29 а). Из точек1 и2 как из центров описывают дуги радиусом окружностиR до пересечения с ней в точкахА, В, С иD . ТочкиA ,B ,1, С, D и2 делят окружность на шесть равных частей. Эти же точки, взятые через одну, разделят окружность на три равные части (рисунок 29, б). Для деления окружности на 12 равных частей описывают еще две дуги радиусом окружности из точек3 и4 (рисунок 29, в).

Рисунок 29

Построить правильные вписанные треугольник, шестиугольник и т. д. можно также с помощью линейки и угольника в 30 и 60°. На рисунке 30 приведено подобное построение для вписанного треугольника.

Рисунок 30

Деление окружности на семь равных частей и построение правильного вписанного семиугольника (рисунок 31) выполняют с помощью половины стороны вписанного треугольника, приблизительно равной стороне вписанного семиугольника.

Рисунок 31

Для деления окружности на пять или десять равных частей проводят два взаимно перпендикулярных диаметра (рисунок 32, а). РадиусOA делят пополам и, получив точкуВ , описывают из нее дугу радиусомR = BC до пересечения ее в точкеD с горизонтальным диаметром. Расстояние между точкамиC иD равно длине стороны правильного вписанного пятиугольника (а 5 ), а отрезокOD равен длине стороны правильного вписанного десятиугольника (а 10 ). Деление окружности на пять и десять равных частей, а также построение вписанных правильных пятиугольника и десятиугольника показаны на рисунке 32, б. Примером использования деления окружности на пять частей является пятиконечная звезда (рисунок 32, в).

Рисунок 32

На рисунке 33 приведен общий способ приближенного деления окружности на равные части . Пусть требуется разделить окружность на девять равных частей. В окружности проводят два взаимно перпендикулярных диаметра и вертикальный диаметрAB делят на девять равных частей с помощью вспомогательной прямой (рисунок 33, а). Из точкиB описывают дугу радиусомR =AB , и на пересечении ее с продолжением горизонтального диаметра получают точкиС иD . Из точекC иD через четные или нечетные точки деления диаметраAB проводят лучи. Точки пересечения лучей с окружностью разделят ее на девять равных частей (рисунок 33, б).

Рисунок 33

При построении необходимо учитывать, что такой способ деления окружности на равные части требует особенно большой точности выполнения всех операций.

Выполнить трисекцию угла - это значит разделить угол на три равные части. Сделать это, конечно, совсем нетрудно. Можно, например, измерить данный угол транспортиром, разделить найденное число градусов на три, а затем отложить посредством того же транспортира угол, содержащий полученное в частном число градусов. Но можно обойтись

и без транспортира, применяя метод «последовательных приближений»: построив произвольным радиусом дугу, для которой данный угол является центральным, возьмем на глаз хорду, соответствующую третьей части дуги, и отложим эту хорду последовательно три раза по дуге, начиная от одного из ее концов. Если после этого мы окажемся на другом конце дуги, задача решена. Если же, как это обыкновенно и бывает, мы не дойдем до другого конца дуги, или перейдем через него, то взятую нами на глаз хорду надо исправить, увеличив или уменьшив ее на одну треть расстояния от полученной точки до конца дуги, причем эту одну треть берем опять-таки на глаз. Эту исправленную хорду снова откладываем на дуге и в случае надобности вновь исправляем тем же способом. Каждая новая (исправленная) хорда будет давать все более точное решение, и, наконец, повторив операцию несколько раз, мы получим хорду, которая уложится на данной дуге практически ровно три раза, и трисекция угла будет выполнена. Конечно, эти два способа позволяют делить данный угол не только на три, но на любое число равных частей.

Однако, когда математики говорят о проблеме трисекции угла, они имеют в виду не эти весьма ценные в практическом отношении, но все же лишь приближенные способы, а точный способ, притом основанный на применении исключительно циркуля и линейки. Необходимо еще отметить, что имеется в виду использование одного лишь ребра линейки и что линейка должна служить только для проведения прямых (не допускается использование, например, масштабных делений), а циркуль - только для вычерчивания окружностей. Наконец, искомый способ должен давать решение задачи посредством конечного числа операций проведения прямых и окружностей. Последнее замечание очень существенно. Так, установив (по формуле суммы геометрической бесконечно убывающей прогрессии), что

можно предложить следующее решение задачи трисекции угла, требующее применения только линейки и циркуля: делим данный угол на 4 равные части, что, как известно, выполнимо посредством циркуля и линейки, а затем к полученному углу прибавляем поправку, равную четверти его самого, т. е. данного угла, потом вторую поправку,

равную первой, т. е. данного угла, и т. д. Точное решение задачи этим способом требует бесконечно большого числа операций (делений углов на 4 равные части), а потому не является тем классическим решением, какое имеют в виду, когда говорят о решении задачи трисекции угла и других задач на построение.

Итак, у нас будет идти речь о точном решении задачи трисекции угла посредством проведения конечного числа прямых и окружностей.

Для некоторых углов эта задача решается весьма просто. Так, для трисекции угла в 180° достаточно построить угол в 60°, т. е. угол равностороннего треугольника, а для трисекции углов в 90° и 45° - углы в 30° и 15°, т. е. половину и четверть угла равностороннего треугольника. Однако доказано, что наряду с бесконечным множеством углов, допускающих трисекцию, существует бесконечное же множество углов, не допускающих трисекции (в указанном выше смысле). Так, нельзя разделить на три равные части (посредством проведения конечного числа прямых и окружностей) ни угол в 60°, ни угол в 30°, ни угол в 15°, ни угол в 40°, ни угол в 120°, ни бесконечное множество других углов.

Теперь выясним, правилен ли следующий часто рекомендуемый способ деления произвольного угла на три равные части. Из вершины В произвольным радиусом проводим дугу окружности, которая пересечет стороны угла в точках (черт. 39). Делим хорду на три равные части и соединяем точки деления с В. Углы окажутся, будто бы, равными, и трисекция произвольного угла следовательно, будет выполнена так, как

требуется, т. е. посредством проведения конечного числа прямых и окружностей: деление отрезка на три равные части, которое здесь требовалось, выполнимо, как известно, именно так.

Предлагающие такое решение полагают, что равенство отрезков на которые мы разделили хорду влечет за собой и равенство дуг которые получатся, если продолжить и до пересечения с окружностью. Так ли это? Если эти дуги равны, то равны и углы (пусть каждый из них равен а), равны и стягивающие их хорды Но отрезок больше отрезка (это утверждение подсказывается чертежом, но ниже мы его докажем), а отрезок равен отрезку так как углы и равны:

Следовательно, при равенстве отрезков и отрезки и вопреки условию неравны, и предположение о равенстве и надо отвергнуть.

Опустив перпендикуляр из вершины В на хорду замечаем, что вся фигура симметрична относительно ВК: перегнув чертеж по мы приведем обе его половинки к совпадению. Отсюда заключаем, что отрезок III перпендикулярен к а в силу этого отрезок параллелен и треугольники и подобны, что дает: Но а потому и как мы и утверждали выше.

В виде приложения мы можем теперь заняться решением одной уже раньше затронутой популярной математической проблемы, - а именно, задачи о делении любого угла на равных частей, в частности для - задачи о трисекции угла. Задача состоит в том, чтобы найти точное построение с помощью циркуля и линейки, которое давало бы деление любого угла на три равные части. Для целого ряда специальных значений угла легко можно найти такие построения. Я хочу познакомить вас с ходом мыслей в доказательстве невозможности трисекции угла в указанном смысле; при этом я прошу вас вспомнить доказательство невозможности построения правильного семиугольника с помощью циркуля и линейки. Как и в том доказательстве, мы сведем задачу к неприводимому кубическому уравнению и затем покажем, что его невозможно решить посредством одних только извлечений квадратного корня. Но только теперь в уравнение будет входить параметр - угол - тогда как раньше коэффициенты были целыми числами; в соответствии с этим теперь вместо числовой должна оказаться функциональная неприводимость.

Чтобы получить уравнение, дающее запись нашей проблемы, представим себе, что на положительной полуоси действительных чисел построен угол (рис. 41); тогда его вторая сторона пересечет окружность радиуса 1 в точке

Наша задача сводится к тому, чтобы найти такое независимое от величины угла построение, состоящее из конечного числа операций с циркулем и линейкой, которое всякий раз давало бы точку пересечения этой окружности со стороной угла т. е. точку

Это значение z удовлетворяет уравнению

и аналитический эквивалент нашей геометрической задачи состоит в том, чтобы решить это уравнение посредством конечного числа извлечений квадратных корней из рациональных функций от ибо это суть координаты точки w, из которых мы должны исходить при нашем построении.

Прежде всего надо убедиться в том, что уравнение (3) неприводимо с точки зрения теории функций. Правда, это уравнение не вполне подходит под тот тип уравнений, который мы имели в виду в предыдущих общих рассуждениях: вместо рационально входящего комплексного параметра w здесь рационально входят две функции - косинус и синус - действительного параметра Мы назовем здесь многочлен приводимым при условии, что он распадается на многочлены относительно , коэффициенты которых тоже являются рациональными функциями от Можно дать критерий понимаемой в этом смысле приводимости, вполне подобный прежнему. А именно, если в равенстве (3) пробегает все действительные значения, то пробегает в то же время окружность радиуса 1 в плоскости w, которой в силу стереографической проекции соответствует экватор на сфере w. Линия, лежащая над этой окружностью на римановой поверхности уравнения и одновременно пробегающая все три листа, при помощи (3) взаимно однозначно отображается на окружность радиуса 1 сферы и поэтому может быть до некоторой степени названа его «одномерным римановым изображением». Ясно, что подобным образом можно для всякого уравнения вида построить такое риманово изображение; для этого нужно взять столько экземпляров окружностей с радиусом 1 и с длиной дуги сколько корней имеет уравнение, и скрепить их соответственно связности корней.

Далее заключаем совершенно подобно прежнему, что уравнение только тогда могло бы быть приводимым, если бы его одномерное риманово изображение распадалось на отдельные части, но в данном случае это не имеет места, и потому неприводимость нашего уравнения (3) доказана.

Прежнее доказательство того, что всякое кубическое уравнение с рациональными численными коэффициентами, разрешимое посредством ряда извлечений квадратного корня, является приводимым, может быть дословно перенесено на настоящий случай неприводимого в функциональном смысле уравнения (3); стоит только вместо слов «рациональные числа» говорить каждый раз «рациональные функции от После этого является вполне доказанным наше утверждение о том, что невозможно выполнить посредством конечного числа операций (с циркулем и линейкой) деление на три части произвольного угла таким образом, все старания людей, занимающихся трисекцией угла, обречены на вечную бесплодность!

Теперь перейдем к рассмотрению несколько более сложного примера.


Академик Российской АН Н. ДОЛЛЕЖАЛЬ.

Давний автор журнала академик Николай Антонович Доллежаль - крупный специалист в области энергетики. В свободное время Николай Антонович занимается исследованием знаменитых задач древности, известных как трисекция угла, удвоение куба и квадратура круга (см. "Наука и жизнь" № 7, 1993 г.; №№ 3, 8, 1994 г.; № 9, 1995 г.). Сложность всех этих задач состоит в том, что решаться они должны без вычислений и расчетов, чисто геометрически, только с помощью циркуля и линейки без делений. Используя именно этот классический метод, Н. А. Доллежаль сумел найти очень изящное решение задачи о делении на три равные части произвольного угла.

Наука и жизнь // Иллюстрации

Суть этой геометрической задачи заключается в отыскании графического метода деления произвольного угла на три равные части с помощью циркуля и обыкновенной линейки. Ниже приводим описание метода, решающего эту задачу независимо от размера и типа (острый, тупой) угла, предлагаемого для разделения. Ограничений на формы геометрических фигур нет, численных измерений или вычислений не делается. Для примера взят случайный угол.

Геометрические элементы комбинируются геометрической фигурой, состоящей из равнобедренного треугольника АВС с нижним углом В, подлежащим разделению на три равных угла, и равносторонней трапеции АDFC, все четыре угла которой находятся на равном расстоянии от вершины угла В. Треугольник и трапеция сомкнуты своими основаниями АС. Предлагаемый метод решения задачи состоит в следующем:

1) Основанием для построения упомянутой геометрической фигуры служат уравнения, связывающие основные ее элементы:

где S - основание треугольника и трапеции; а - сторона трапеции; t - высота треугольника; h - высота трапеции.

Главные элементы фигуры находятся во взаимной зависимости: отношения основания к стороне трапеции и высот трапеции треугольника связаны уравнением (2).

У отношений S/а и h/t есть пределы применимости: отношение основания трапеции к ее стороне находится в пределах 2 ... 3, а отношения высот трапеции и треугольника изменяются при этом от бесконечности до 0. За пределами этих ограничений построение фигуры треугольник плюс трапеция невозможно.

В таблице для примера и выбора основных показателей для построения треугольника и трапеции приведены некоторые численные значения переменных, входящих в уравнения. С ее помощью можно задать отношение S/а и получить отношение h/t.

На рис. 1 представлено решение задачи предлагаемым методом. В качестве примера, не имеющего принципиального значения, взято равенство высот треугольника и трапеции. Для большей наглядности на рисунке приведены дополнительные геометрические построения: деление угла надвое, проведение параллельных линий и нанесение равномерных делений.

Решение задачи начинается с деления заданного угла АВС пополам линией ВЕ и проведения под прямым углом к ней через точку В горизонтальной линии XY. На линии ХY в обе стороны от точки В наносятся деления, отвечающие отношению основания трапеции к ее стороне, в данном случае 5 и 2. Это соотношение получено из уравнения (2) при условии равенства высот - см. таблицу.

Из точек, отвечающих делению 5, проводятся параллели биссектрисе ВЕ до пересечения со сторонами угла в точках А и С. Линия АС служит общим основанием треугольника и трапеции, отрезки АВ и ВС равны. Из точек, отвечающих отметке 2 на отрезке XY, проводятся линии, также параллельные биссектрисе угла АВС, и на них отрезками BD и BF, равными сторонам треугольника ВА = ВС, отмечаются точки D и F - вершины углов трапеции АDFC. Точки D и F определяют высоту ВЕ, равную сумме высот треугольника и трапеции.

Для проверки и доказательства проводятся диагонали AF и DC трапеции АDFC, пересекающиеся в точке Z на средней линии треугольника АВС. Образовавшиеся два треугольника АDF и DFC равнобедренные, поскольку их основания, т. е. диагонали трапеции, разделены в точках Т надвое, пересекаясь в них с радиусами ВD и ВF и средней линией РР трапеции. Сторона DF принадлежит обоим треугольникам, поэтому треугольники АВD, DВF и FВС равны. Все три их угла с вершинами в точке В равны между собой и в сумме составляют заданный угол АВС.

Отрезки прямых DM и FN образуют стороны ромбов ADFN и DFCM, своими геометрическими свойствами подтверждающих правильность построения.

На рис. 2 показано соотношение образовавшихся углов. Характерно, что нижние углы трапеции DАС = FСА равны одной трети разделяемого угла АВС.

При построении геометрической фигуры на рис. 1 было принято отношение величины основания трапеции к ее стороне 5:2 для простоты построений: этому соотношению отвечает равенство высот трапеции и треугольника.

На рис. 3 построена фигура "треугольник - трапеция" для сравнительно острого угла АВС. Исходным принимается отношение высоты треугольника к сумме высот треугольника и трапеции, равное 5:6, которому, согласно уравнению (1), отвечает значение S/а = 17/6. Как и в первом случае, это значение поровну, т. е. 8 1/2 к 3, откладывается на линии XY в обе стороны от точки В, и производятся аналогичные построения.

Вообще, нет необходимости предварительно принимать численные значения S/а. Достаточно на линиях ВХ и ВY из точки В отложить по три равных отрезка, отметив их концы, и из любой точки между второй и третьей отметками построить перпендикуляры до пересечения со сторонами угла В в точках А и С. Затем из первой отметки также восстановить перпендикуляры и на них отложить точки D и F на расстоянии от точки В, равном стороне треугольника АВС.

Если из точек А и С на линиях ВD и ВF отложить по две равноотстоящие точки N и М, получим отрезок NM, равный S-2а. Отношение этой длины к а определяет отношение высот трапеции и треугольника согласно формуле (2).

В остальном поступают, как и в первом случае. Правильность построения можно проверить по формуле

следующей из (2). Сумма t+h никогда не превышает сторону ВА(ВD) треугольника.

Графически равенство (4) проверяется так (рис. 4). Берется произвольный угол PQN, разделенный биссектрисой QQ?. На левой стороне угла от точки Q циркулем откладываются отрезки S-а и а, образующие точки Р и L. Далее точка Р соединяется с точкой Q? и из точки L проводится параллельная РQ? линия LQ???. Это означает, что на биссектрисе угла возникла отметка Q, причем а/(S-а)= = QQ??/QQ?. На правой стороне угла откладываем циркулем отрезки 2t+h и t+h из построенного чертежа. Конец отрезка 2t+h - точку N - также соединяем с точкой Q?, а из точки М - конца отрезка t+h - проводим линию, параллельную NQ?. На средней линии угла отмечается отношение (t+h)/(2t+h)=QQ??? /QQ?. Если линии LQ?? и МQ??? пересекаются на средней линии угла, это означает, что левая и правая части в формуле равны. Что и требуется.

Можно ли путем измерения соответствующих отрезков, в частности оснований треугольников, определить их длину? Нельзя, так как каждый служит хордой соответствующей воображаемой дуги окружности, содержащей долю, не поддающуюся измерению. Для определения точности решения задачи может быть использован только графический метод.

Таким образом, нами предложено доказательство возможности графического деления угла на три с помощью циркуля и линейки. Остается графически не выясненной связь элементов трапеции и треугольников, иными словами, зависимость между стороной трапеции а и высотой треугольника t. Эта задача может иметь самостоятельный характер для принципа построения трапеции.

Приношу благодарность профессору МГТУ В. И. Солонину за благожелательную критику.

8 июня 2011

Деление прямых линий и углов может быть произведено двояким образом: на глаз и с помощью геометрического построения.

При делении прямой на две равные части поступают следующим образом. Половину данной прямой берут циркулем на глаз и откладывают эту половину от обоих концов прямой. Если концы половинок сходятся, то, значит, данная прямая разделена правильно, если нет, то ошибка (разница) делится опять пополам на глаз и прибавляется (или отнимается, смотря по надобности) ко взятой циркулем половине.

Так же поступают при делении на 3, 5 и т. д. равных частей. При делении на 4 равные части сначала делят прямую пополам, а потом — обе ее половины. При делении на 6 равных частей сначала делят прямую на 3 равные части, а затем каждую часть пополам.

Угол делят на равные части таким же образом, с той разницей, что делится на части дуга, проведенная любым радиусом из вершины данного угла и заключенная между сторонами угла. Точки деления соединяются с вершиной угла прямыми линиями.

Деление на глаз прямых линий и углов (дуг) сберегает время. Поэтому надо постоянно упражняться в таком делении.

Деление прямой линии построением производится так. Предположим, что данный отрезок AN требуется разделить на 5 равных-частей. Из конца прямой АВ под произвольным углом проводим прямую АС и на ней от точки А откладываем пять произвольных частей так, чтобы AD = DE = EF = FG = GH; соединяем Н с N и через точки D, Е, F и G проводим прямые, параллельные NH, которые пересекут AN в точках I, К, L, М так, что AL = IK = KL = LM = MN.

Деление углов на равные части построением выполняется тремя основными способами.

1. Данный угол ВАС разделить на 2, 4, 8 и т. д. равных частей.

Из точек D и как из центров, одинаковыми радиусами проводим дуги, которые пересекутся в F. Прямая FA разделит угол ВАС (а точка G — дугу DF) пополам.

Чтобы разделить угол или дугу на 4 равные части, надо повторить то же построение для каждой половины и т. д. Построение годится для любых углов: прямых, тупых и острых.

2. Прямой угол ВАС разделить на 3, 6, 12 и т. д. равных частей.

Радиусом AD из точек D и Е описываем дуги, которые пересекут дугу в точках F и G; проводим AF и AG, которые делят угол ВАС и дугу DF на 3 равные части.

Чтобы разделить угол на 6 равных частей, надо каждую треть разделить пополам и т. д. 

Всякий яругой угол, кроме прямого, может быть разделен на 3 равные части только на глаз или по транспортиру.

3. Угол, образуемый прямыми ЛВ и CD, разделить пополам при условии, что вершина угла недоступна.

Через произвольную точку Е на прямой CD проводим прямую EG, параллельную ЛВ из этой же точки произвольным радиусом описываем дугу GH;соединяем G и H прямой линией и проводим ее до пересечения с ЛВ в точке I; далее делим прямую HI пополам в точке М и через эту точку проводим к прямой HI перпендикуляр KL, этот перпендикуляр разделит угол, вершина которого недоступна, на 2 равные части. Иногда надо выполнить построение перехода двух полос неодинаковой ширины это надо делать с помощью закругления по дуге круга, как показано на рисунке.

Продолжаем отрезки а, с и b, d до взаимного пересечения в точках A и В и образовавшиеся углы делим пополам. Если продолжить перпендикуляр DC до пересечения с биссектрисами углов ЕАС и FBD, то полученные точки М и М 1 будут центрами искомых закруглений.

Угол делят на равные части и с помощью транспортира. Если требуется, например, данный угол разделить на 7 равных частей, то находят, чему равен угол, и полученное число градусов делят на 7; результат обычно бывает неточный, так как на обыкновенные транспортиры минуты и секунды не наносятся. Необходимое исправление делается на глаз.

«Отделка комнат при ремонте»,
Н.П.Краснов

Мы уже говорили, что для исполнения некоторых видов малярных работ необходимо уметь рисовать. А умение рисовать, в свою очередь, предполагает знание правил построения геометрических фигур. Эскизы на бумаге вычерчивают при помощи треугольников, рейсшин, транспортаpa и циркуля, а на плоскости стен и потолков построения выполняются при помощи веска, линейки, деревянного циркуля и шнура. При этом надо…


Прямой угол, т. е. равный 90°, образуется двумя взаимно перпендикулярными линиями. Перпендикуляр строится следующим образом. Опустить перпендикуляр. Из данной точки С (лежащей вне прямой), как из центра, произвольным радиусом описываем дугу так, чтобы она пересекла данную прямую в двух точках D и Е из этих точек, как из центров, одинаковыми радиусами описываем дуги, чтобы они…