Элементы комбинаторики. Комбинаторика - основные понятия и формулы. Перестановки, размещения, сочетания Сколько существует всего различных вариантов

Комбинаторика - раздел математики. Основные понятия и формулы комбинаторики как науки применяются во всех сферах жизни.

Неудивительно, что она включена в программу 11 класса, а также во вступительные испытания во многих ВУЗах РФ. Ее основы лежат в прикладном искусстве многих сфер деятельности человека.

Ее история насчитывает более 6 веков. Первые комбинаторные задачи появились в трудах философов и математиков Средневековья.

Представители того научного мира пытались найти методы решения таких задач, их базовые правила и понятия, утвердить уникальные формулы и уравнения для тех, кто ещё не встречался с ними. Такая информация в наше время называется информацией «для чайников».

Попытаемся разобраться в аспектах этой области науки: каковы элементы, свойства, правила, методы и основное ее применение в нашей жизни? Конечно, всю область в одной статье невозможно охватить. Поэтому ниже будет представлено всё самое основное.

Что такое комбинаторика в математике

Суть этого термина дают книги прошлых лет: это раздел математики, занимающийся операциями со множеством элементов.

В интернете есть учебники по информатике и математике для детей, школьников, сборники материалов и задач для начинающих, где в доступном виде объяснена «занимательная» комбинаторика. Нужно твердо выяснить, как решать подобные задачи.

В младших классах задачи на эту тему решают на дополнительных кружках, а в школах с углубленным изучением математики — на основных уроках. К тому же, задачи по комбинаторике включены в олимпиады всех уровней.

Основные понятия

Их несколько:

  1. Элемент – любой объект или явление, входящий в искомое множество.
  2. Сочетание – подмножества, находящиеся в произвольном порядке в исходном множестве.
  3. Перестановка – элементы во множестве находятся в строго определенном порядке.
  4. Размещение – упорядоченные подмножества в исходном множестве.

Правило произведения

Является одним из основных правил при решении таких задач и звучит так:

При выборе элемента А из n способов и выборе элемента В из m способов верно утверждение, что выбрать пару А и В одновременно можно n * m способами.

Рассмотрим на конкретных примерах.

Задача №1.

В коробке лежит 2 мяча и 6 скакалок. Сколько существует способов достать 1 мяч и 1 скакалку?

Ответ прост: 2 * 6 = 12.

Задача №2.

Есть 1 кубик, 2 шарика, 3 цветка и 4 конфеты. Сколькими способами можно вытянуть кубик, шарик, цветок и конфету?

Решение аналогично: 1 * 2 * 3 * 4 = 24.

Причем левую часть можно записать гораздо проще: 4!

! в данном случае является не знаком препинания, а факториалом. С помощью него можно вычислить более сложные варианты и решать трудные задачи (существуют разные формулы, но об этом позже).

Задача №3.

Сколько двузначных чисел можно составить из 2 цифр?

Ответ: 2! = 2.

Задача №4.

Сколько десятизначных чисел можно составить из 10 цифр?

Правило суммы

Тоже является базовым правилом комбинаторики.

Если А можно выбрать n раз, а В - m раз, то А или В можно выбрать (n + m ) раз.

Задача №5.

В коробке лежат 5 красных, 3 желтых, 7 зеленых, 9 черных карандашей. Сколько есть способов вытащить 1 любой карандаш?

Ответ: 5 + 3 + 7 + 9 = 24.

Сочетания с повторениями и без повторений

Под этим термином понимают комбинации в произвольном порядке из множества n по m элементов.

Число сочетаний равно количеству таких комбинаций.

Задача №6.

В коробке находится 4 разных фрукта. Сколькими способами можно достать одновременно 2 разных фрукта?

Решение простое:

Где 4! – комбинация из 4 элементов.

С повторениями чуть сложней, комбинации считаются по такой формуле:

Задача №7.

Возьмем тот же самый случай, но при условии, что один фрукт возвращается в коробку.

В этом случае:

Размещения с повторениями и без повторений

Под этим определением понимают набор m элементов из множества n элементов.

Задача №8.

Из 3 цифр надо выбрать 2, чтобы получались разные двузначные числа. Сколько вариантов?

Ответ прост:

А как же быть с повторениями? Здесь каждый элемент может размещаться несколько раз! В таком случае общая формула будет выглядеть следующим образом:

Задача №9.

Из 12 букв латинского алфавита и 10 цифр натурального ряда надо найти все варианты составления автомобильного кода региона.

Перестановки с повторениями и без повторений

Под этим термином понимают все возможные комбинации из n элементного множества.

Задача №10.

Сколько возможных пятизначных чисел можно составить из 5цифр? А шестизначных из 6 цифр? Семизначных из 7 цифр?

Решения, согласно вышеприведенной формуле, следующие:

А как же быть с повторениями? Если в таком множестве есть одинаковые по своей значимости элементы, то перестановок будет меньше!

Задача №11.

В коробке есть 3 одинаковых карандаша и одна ручка. Сколько перестановок можно сделать?

Ответ прост: 4! / (3! * 1!) = 4.

Комбинаторные задачи с решениями

Примеры всех возможных типов задач с решениями были даны выше. Здесь попробуем разобраться с более сложными случаями, встречающимися в нашей жизни.

Типы задач Что требуется найти Методы решения
Магический квадрат Фигура, в которой сумма чисел в рядах и столбцах должна быть одинакова (его разновидность – латинский квадрат). Рекуррентные соотношения. Решается подобная же задача, но с гораздо меньшим множеством элементов по известным правилам и формулам.
Задача размещения Стандартная производственная задача (например, в лоскутной технике) — найти возможные способы разложения количества продуктов в ячейки в определенном порядке. Включения и исключения. Как правило, применяется при доказательстве различных выражений.
Задачи про торговцев Суть — найти все возможные пути прохождения людей из пункта А в пункт В. Траектории. Для этого вида задач характерно геометрическое построение возможных способов решения.

Заключение

Стоит изучать эту науку, поскольку в век быстрой модернизации технологий потребуются специалисты, способные предоставить различные решения тех или иных практических задач.

Во многих комбинаторных задачах непосредственное нахождение числа интересующих нас вариантов оказывается затруднительным. Однако при некотором изменении условия задачи можно найти количество вариантов, превосходящее исходное в известное число раз. Такой прием называется методом кратного подсчета .

1. Сколько анаграмм имеет слово КЛАСС?

Трудность в том, что в этом слове две одинаковые буквы С. Будем временно считать их разными и обозначим С 1 и С 2 . Тогда число анаграмм окажется равным 5! = 120. Но те слова, которые отличаются друг из друга лишь перестановкой букв С 1 и С 2 , на самом-то деле являются одной и той же анаграммой! Поэтому 120 анаграмм разбиваются на пары одинаковых, т.е. искомое число анаграмм равно 120/2 = 60.

2. Сколько анаграмм имеет слово ШАРАДА?

Считая три буквы А различными буквами А 1 , А 2 , А 3 , получим 6! анаграмм. Но слова, которые получаются друг из друга только перестановкой букв А 1 , А 2 , А 3 , на самом деле являются одной и той же анаграммой. Поскольку имеется 3! перестановок букв А 1 , А 2 , А 3 , полученные изначально 6! анаграмм разбиваются на группы по 3! одинаковых, и число различных анаграмм оказывается равным 6!/3! = 120.

3. Сколько существует четырехзначных чисел, в записи которых есть хотя бы одна четная цифра?

Найдем количество «ненужных» четырехзначных чисел, в записи которых присутствуют только нечетные цифры. Таких чисел 5 4 = 625. Но всего четырехзначных чисел 9000, поэтому искомое количество «нужных» чисел равно 9000 – 625 = 8375.

  1. Найти число анаграмм у слов ВЕРЕСК, БАЛАГАН, ГОРОДОВОЙ.
  2. Найти число анаграмм у слов БАОБАБ, БАЛЛАДА, ПЕРЕПОЛОХ, АНАГРАММА, МАТЕМАТИКА, КОМБИНАТОРИКА, ОБОРОНОСПОСОБНОСТЬ.
  3. Сколькими способами можно поселить 7 приезжих в три гостиничных номера: одноместный, двухместный и четырехместный?
  4. В холодильнике лежат два яблока, три груши и четыре апельсина. Каждый день в течение девяти дней подряд Пете дают один какой-то фрукт. Сколькими способами это может быть сделано?
  5. Из семи лучших лыжников школы нужно отобрать команду из трех человек для участия в городских соревнованиях. Сколькими способами это можно сделать?
  6. Перед экзаменом профессор пообещал поставить двойки половине экзаменуемых. На экзамен пришло 20 студентов. Сколькими способами он может выполнить обещание?
  7. Сколько слов можно составить из пяти букв А и не более чем из трех букв Б?
  8. В продаже есть шоколадное, клубничное и молочное мороженое. Сколькими способами можно купить три мороженых?
  9. При приготовлении пиццы к сыру добавляются разные компоненты, обеспечивающие тот или иной вкус. В распоряжении Билла имеются лук, грибы, помидоры, перец и анчоусы, причем все это, по его мнению, можно добавлять к сыру. Сколько видов пиццы может приготовить Билл?
  10. Свидетель криминальной разборки запомнил, что преступники скрылись на «мерседесе», номер которого содержал буквы Т, З, У и цифры 3 и 7 (номером является строка, в которой сначала идут три буквы, а затем - три цифры). Сколько существует таких номеров?
  11. Сколько диагоналей в выпуклом n -угольнике?
  12. Сколько всего существует n -значных чисел?
  13. Сколько существует десятизначных чисел, в записи которых есть хотя бы две одинаковые цифры?
  14. Кубик бросают трижды. Среди всевозможных последовательностей результатов есть такие, в которых хотя бы один раз выпала шестерка. Сколько их?
  15. Сколько пятизначных чисел имеют в своей записи цифру 1?
  16. Сколькими способами можно расставить на шахматной доске белого и черного короля так, чтобы они не били друг друга?
  17. Сколько делителей у числа 10800?

Комбинаторикой называется раздел математики, изучающий вопрос о том, сколько комбинаций определенного типа можно составить из данных предметов (элементов).

Правило умножения (основная формула комбинаторики)

Общее число способов, которыми можно выбрать по одному элементу из каждой группы и расставить их в определенном порядке (то есть получить упорядоченную совокупность ), равно:

Пример 1

Монету подбросили 3 раза. Сколько различных результатов бросаний можно ожидать?

Решение

Первая монета имеет альтернативы – либо орел, либо решка. Для второй монеты также есть альтернативы и т.д., т.е. .

Искомое количество способов:

Правило сложения

Если любые две группы и не имеют общих элементов, то выбор одного элемента или из , или из , …или из можно осуществить способами.

Пример 2

На полке 30 книг, из них 20 математических, 6 технических и 4 экономических. Сколько существует способов выбора одной математической или одной экономической книги.

Решение

Математическая книга может быть выбрана способами, экономическая - способами.

По правилу суммы существует способа выбора математической или экономической книги.

Размещения и перестановки

Размещения – это упорядоченные совокупности элементов, отличающиеся друг от друга либо составом, либо порядком элементов.

Размещения без повторений , когда отобранный элемент перед отбором следующего не возвращается в генеральную совокупность. Такой выбор называется последовательным выбором без возвращения, а его результат – размещением без повторений из элементов по .

Число различных способов, которыми можно произвести последовательный выбор без возвращения элементов из генеральной совокупности объема , равно:

Пример 3

Расписание дня состоит из 5 различных уроков. Определите число вариантов расписания при выборе из 11 дисциплин.

Решение

Каждый вариант расписания представляет набор 5 дисциплин из 11, отличающихся от других вариантов как составом, так и порядком следования. поэтому:

Перестановки – это упорядоченные совокупности, отличающиеся друг от друга только порядком элементов. Число всех перестановок множества из элементов равно

Пример 4

Сколькими способами можно рассадить 4 человек за одним столом?

Решение

Каждый вариант рассадки отличается только порядком участников, то есть является перестановкой из 4 элементов:

Размещения с повторениями , когда отобранный элемент перед отбором следующего возвращается в генеральную совокупность. Такой выбор называется последовательным выбором с возвращением, а его результат - размещением с повторениями из элементов по .

Общее число различных способов, которыми можно произвести выбор с возвращением элементов из генеральной совокупности объема , равно

Пример 5

Лифт останавливается на 7 этажах. Сколькими способами могут выйти на этих этажах 6 пассажиров, находящихся в кабине лифта?

Решение

Каждый из способов распределения пассажиров по этажам представляет собой комбинацию 6 пассажиров по 7 этажам, отличающуюся от других комбинаций как составом, так и их порядком. Так как одном этаже может выйти как один, так и несколько пассажиров, то одни и те же пассажиры могут повторяться. Поэтому число таких комбинаций равно числу размещений с повторениями из 7 элементов по 6:

Сочетания

Сочетаниями из n элементов по k называются неупорядоченные совокупности, отличающиеся друг от друга хотя бы одним элементом.

Пусть из генеральной совокупности берется сразу несколько элементов (либо элементы берут последовательно, но порядок их появления не учитывается). В результате такого одновременного неупорядоченного выбора элементов из генеральной совокупности объема получаются комбинации, которые называются сочетаниями без повторений из элементов по .

Число сочетаний из элементов по равно:

Пример 6

В ящике 9 яблок. Сколькими способами можно выбрать 3 яблока из ящика?

Решение

Каждый вариант выбора состоит из 3 яблок и отличается от других только составом, то есть представляет собой сочетания без повторений из 9 элементов:

Количество способов, которыми можно выбрать 3 яблока из 9:

Пусть из генеральной совокупности объема выбирается элементов, один за другим, причем каждый отобранный элемент перед отбором следующего возвращается в генеральную совокупность. При этом ведется запись, какие элементы появились и сколько раз, однако порядок их появления не учитывается. Получившиеся совокупности называются сочетаниями с повторениями из элементов по .

Число сочетаний с повторениями из элементов по :

Пример 7

На почте продают открытки 3 видов. Сколькими способами можно купить 6 открыток?

Это задача на отыскание числа сочетаний с повторениями из 3 по 6:

Разбиение множества на группы

Пусть множество из различных элементов разбивается на групп так, то в первую группу попадают элементов, во вторую - элементов, в -ю группу - элементов, причем . Такую ситуацию называют разбиением множества на группы.

Число разбиений на групп, когда в первую попадают элементов, во вторую - элементов, в k-ю группу - элементов, равно:

Пример 8

Группу из 16 человек требуется разбить на три подгруппы, в первой из которых должно быть 5 человек, во второй – 7 человек, в третьей – 4 человека. Сколькими способами это можно сделать?

Класс: 5

В данной статье рассмотрим один из уроков в курсе математики 5 класса, посвященного знакомству с комбинаторикой.

Цели урока.

Образовательные :

Познакомить учащихся с новым типом задач (комбинаторные задачи), приемами их решения – перебор возможных вариантов, построение дерева возможных вариантов, применение правила умножения;

Ввести новое понятие – факториал, закрепить его при решении задач, примеров, уравнений.

Воспитательные :

Формирование уважения к товарищам, умения слушать и слышать собеседника

Формирование отношения к дружбе как одной из важнейших человеческих ценностей.

Развивающие :

Формирование интереса к предмету;

Формирование вычислительных навыков;

Развитие логического мышления;

Формирование умения доказывать, обосновывать свое мнение.

Ход урока

1. Организационный момент

Учитель: Сегодня у нас с вами необычный урок. Мы будем решать задачи, связанные с одним из интереснейших разделов математики – комбинаторикой. В науке и в реальной жизни очень часто приходится решать задачи, главным вопросом которых является вопрос “Сколькими способами это можно сделать?”. Например:

Сколькими способами можно поставить ученику оценку на уроке?

Сколькими способами можно назначить дежурного в классе?

Сколькими способами можно назначить двух дежурных в классе?

Решая такие задачи, приходится составлять различные комбинации из конечного числа элементов и подсчитывать число комбинаций. Такие задачи получили название комбинаторных задач, а раздел математики, в котором рассматриваются подобные задачи, называют комбинаторикой. А какой еще теме будет посвящен урок, вы узнаете, когда мы проверим, как вы справились с выполнением домашнего задания.

2. Проверка выполнения домашнего задания

(На предыдущем уроке домашнее задание составляется таким образом, чтобы заданий было ровно 6. Например, в учебнике Виленкина Н.Я. и др. это могут быть № 693(а, в), 735(1), 765(а,б,в))

На доске – таблица и закрепленные магнитами карточки. На карточках с одной стороны – ответ к заданию из домашней работы, с другой стороны – буква.

Учитель: Проверим домашнюю работу. Откройте тетради, возьмите карандаши. Найдите ответы к номерам домашней работы.

Учащиеся выходят к доске по одному, выбирают карточку с ответом и прикрепляют ее в ячейку таблицы под номером задания. Сначала карточки закрепляют в клетках таблицы вверх стороной, на которой записан ответ, чтобы учащиеся могли проверить правильность выполнения домашней работы. Остальные проверяют свои ответы в тетрадях.

№ упражнений 693(а) 693(в) 735(1) 765(а) 765(б) 765(в)
Ответы 25 13 6 182 000 6 300 65 000

Варианты ответов (располагаются на разных сторонах карточек). Карточек делают заведомо избыточное количество, чтобы часть ответов была неверной.

д р у ж б а м п о
25 13 6 182 000 6 300 65 000 49 12 18 200

“5” - если все верно

“4” - если одна ошибка

“3” - 2-3 ошибки

“2” - больше 3 ошибок

Учитель: Перевернем карточки, какое слово получили? (ДРУЖБА). Действительно, сегодня на уроке мы будем не только решать математические задачи, совершенствовать навыки вычислений, но и говорить о дружбе.

3. Новый материал.

Учитель: Итак, мы уже сказали, что будем сегодня учиться решать задачи, главным вопросом которых является вопрос “Сколькими способами..”.

Имеются три слова “ДРУЖБА”, “ДЕЛО”, “ЛЮБИТ” (нарезать листочки с этими словами – по 7 карточек на каждое слово). Сколькими способами из этих слов можно составить фразу?

Учащиеся предлагают варианты, эти варианты составляют на доске.

Ответ: 6 способов.

Учитель: Как вы думаете, какой вариант является верным с точки зрения русского языка? (Дружба любит дело). Как вы понимаете это высказывание?

Учитель: Здесь был приведен полный перебор всех возможных вариантов, или, как обычно говорят, всех возможных комбинаций. Поэтому это комбинаторная задача. Давайте подумаем, как можно записать, оформить решение этой задачи.

1 способ. Обозначим предложенные слова заглавными буквами:

ДРУЖБА – Д

ЛЮБИТ – Л

ДЕЛО – Е (возьмем вторую букву этого слова)

Тогда все названные вами способы можно просто перечислить: ДЛЕ, ДЕЛ, ЛДЕ, ЛЕД, ЕДЛ, ЕЛД.

Оказывается, решение можно оформить в виде модели, которую называют деревом возможных вариантов. Она, во-первых, наглядна, как всякая картинка, и, во-вторых, позволяет все учесть, ничего не пропустив,

Учащиеся под руководством учителя составляют схему:

Способ 3 (рассуждение)

На первом месте может стоять одно из трех слов: ДРУЖБА, ЛЮБИТ, ДЕЛО. Если первое слово выбрано, то на втором месте может стоять одно из двух оставшихся слов, а на третьем месте – только одно оставшееся слово. Значит, всего вариантов: .

Заметим, что последний прием называется правилом умножения.

У каждого из этих трех способов есть свои преимущества и свои недостатки (обсудить) Выбор решения – за вами! Отметим все же, что правило умножения позволяет в один шаг решать самые разнообразные задачи.

У Ани 3 подруги, и она каждой из них купила по шоколадке и хочет подарить их к празднику. Сколькими способами она может это сделать?

Решение: Решение выполняют на доске ученики (решение выполняется 3 способами)

В компании друзей – 6 человек: Андрей, Борис, Витя, Гриша, Дима, Егор. В школьной столовой за столом 6 стульев. Друзья решили каждый день, завтракая, рассаживаться на эти 6 стульев по-разному. Сколько раз они смогут это сделать без повторений?

Учитель: Какой способ мы выберем? (Учащиеся под руководством учителя должны придти к выводу, что это третий способ – правило умножения).

Решение оформляет на доске ученик.

Для удобства рассуждений будем считать, что друзья усаживаются за стол поочередно. Будем считать, что первой усаживается за стол Андрей. У него 6 вариантов выбора стула. Вторым усаживается Борис, и независимо выбирает стул из 5 оставшихся. Витя делает свой выбор третьим и на выбор у него будет 4 стула. У Гриши будет уже 3 варианта, у Димы – 2, у Егора – 1. По правилу умножения получаем:

Ответ – 720 дней или почти 2 года.

Учитель: Как мы видим, условия задач разные, а решения, по сути дела, одинаковы. Удобно, поэтому ввести и одинаковые обозначения для этих ответов.

Определение: произведение всех натуральных чисел от 1 до п включительно называется п – факториал и обозначается символом п!

Знак п ! читается “Эн факториал”, что в дословном переводе с английского языка обозначает “состоящий из п множителей”. Отметим важную особенность этой величины – ее быстрый рост.

Вычислите:

а) 1!; б) 2!; в) 3!; г) 4!; д) 5!; е)10!

Считают, что 0! =1 (записать)

Задача 5.

Учитель: ДРУЖБА – одно из важнейших богатств, которое может быть у человека. Недаром о дружбе слагаются стихи и песни, сочиняют пословицы и поговорки. Какие пословицы и поговорки о дружбе вы знаете?

Друзья познаются в беде.
Не имей сто рублей, а имей сто друзей.
Один в поле не воин.
Сам погибай, а товарища выручай.
Старый друг лучше новых двух.
Без друга в жизни туго.

Молодцы! Для каждого человека очень важно, чтобы у него были хорошие, настоящие друзья. Давайте решим несколько примеров с применением нового понятия – факториал, и узнаем новую пословицу о дружбе.

7!+ 8! – (13 - 5) 2 6! – 5!

Карточки с ответами выполняют с запасом (есть карточки с числами, не являющимися ответами).

Таблица после заполнения:

7!+ 8! – (13 - 5) 2 6! – 5!
5048 40256 600 24 7
Нет друга - ищи, а нашел - береги

Задание 6.

К Васе в гости пришли 4 друзей, и они собираются смотреть новый фильм. У Васи в комнате есть кресло и еще он принес 4 стула из кухни. Кресло он, несомненно, займет сам, а на стульях рассадит своих друзей. Вася подсчитал, что рассадить друзей он сможет 24 способами.

Учитель: Правильно ли рассчитал Вася? (Да, с точки зрения математики)

Хорошо ли он поступил? (Обсуждается моральный аспект проблемы)

4. Физкультурная минутка.

Учитель: А теперь давайте немного отдохнем, а для этого проведем физкультурную минутку. Если я правильно прочитаю выражение, то вы встаете и поднимаете руки вверх, а если неправильно – садитесь, руки в бок.

Встали. Начинаем, будьте внимательны.

Выражение Слова учителя Верно / неверно
5! +3 Сумма 5! и 3 +
2 – 7! Произведение 2 и 7! -
4х: 2! Частное 4х и 2! +
5! + 7! + 3! Сумма 5!, 7! и 3! +
20! - 19! Частное 20! и 19! -

6. Самостоятельная работа.

Учитель: Ну, а теперь, когда мы хорошо отдохнули, давайте проверим, что мы научились делать сегодня на уроке. Для этого выполним самостоятельную работу.

Вариант 1 Вариант 2
1. В 5 классе в среду 5 уроков: математика, русский язык, литература, музыка и труд. Сколько вариантов расписания на день можно составить? 1. Шесть разных писем раскладывают в 6 разных конвертов. Сколько существует способов такого раскладывания?
2. Вычислите:

а) 6! – 2; б) 4! + (2+3) 2

2. Вычислите:

а) 3 2 + 5! б) (9-4) 2 + 4!

3. Сколькими способами 5 мальчиков могут занять очередь к билетной кассе, если первым все равно будет Толя? 3. Сколькими способами Даша может съесть обед, состоящий из первого, второго, третьего и пирожного, если первым она наверняка съест пирожное?

7. Домашнее задание.

Придумать, записать условия и решения 2 комбинаторных задач на тему “Семья”. Оформить на листах А4, можно выполнить рисунки к задачам.

8. Итог урока.

Давайте подведем итоги урока.

Что нового узнали? (Получили правило умножения, рассмотрели его геометрическую модель – дерево вариантов, ввели новое понятие – факториал)

Что понравилось?

Что запомнилось?

Оценки за урок.

Литература:

  1. Е.А.Бунимович, В.А. Булычев. Вероятность и статистика в курсе математики общеобразовательной школы: лекции 1- 4, 5 – 8. – М.: Педагогический университет “Первое сентября”, 2006.
  2. Виленкин Н.Я. Математика. 5 класс: учебник для общеобразоват. учреждений/ Н.Я.Виленкин и др. – М. : Мнемозина, 2009.
  3. Смыкалова Е.В. Дополнительные главы по математике для учащихся 5 класса. СПб: СМИО. Пресс, 2006.
  4. Мордкович А.Г. События. Вероятности. Статистическая обработка данных: Доп. Параграфы к курсу алгебры 7-9 кл. общеобразовательных учреждений / А.Г. Мордкович, П.В. Семенов. – М.: Мнемозина, 2006.

План:

1. Элементы комбинаторики.

2. Общие правила комбинаторики.

4. Применение графов (схем) при решении комбинаторных задач.

1. Комбинаторика и ее возникновение.

Комбинаторика - это область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству.

Комбинаторика возникла в XVI веке. В жизни привилегированных слоев тогдашнего общества большое место занимали азартные игры (карты, кости). Широко были распространены лотереи. Первоначально комбинаторные задачи касались в основном азартных игр: сколькими способами можно получить данное число очков, бросая 2 или 3 кости или сколькими способами можно получить 2-ух королей в некоторой карточной игре. Эти и другие проблемы азартных игр являлись движущей силой в развитии комбинаторики и далее в развитии теории вероятностей.

Одним из первых занялся подсчетом числа различных комбинаций при игре в кости итальянский математик Тарталья. Он составил таблицы (числа способов выпадения k очков на r костях). Однако, он не учел, одна и та же сумма очков может выпасть различными способами, поэтому его таблицы содержали большое количество ошибок.

Теоретическое исследование вопросов комбинаторики предприняли в XVII веке французские математики Блез Паскаль и Ферма. Исходным пунктом их исследований были так же проблемы азартных игр.

Дальнейшее развитие комбинаторики связано с именами Я. Бернулли, Г. Лейбница, Л. Эйлера. Однако, и в их работах основную роль играли приложения к различным играм.

Сегодня комбинаторные методы используются для решения транспортных задач, в частности задач по составлению расписаний, для составления планов производства и реализации продукции и т.д.

2. Общие правила комбинаторики.

Правило суммы: Если некоторый объект А может быть выбран m способами, а объект В- k способами, то объект «либо А, либо В» можно выбрать m +k способами.

Примеры:

1. Допустим, что в ящике находится n разноцветных шаров. Произвольным образом вынимается 1 шарик. Сколькими способами это можно сделать?

Ответ: n способами.

Распределим эти n шариков по двум ящикам: в первый- m шариков, во второй- k шариков. Произвольным образом из произвольно выбранного ящика вынимается 1 шарик. Сколькими способами это можно сделать?

Решение: Из первого ящика шарик можно вынуть m способами, из второго- k способами. Тогда всего способов m+k=n .

2. Морской семафор.

В морском семафоре каждой букве алфавита соответствует определенное положение относительно тела сигнальщика двух флажков. Сколько таких сигналов может быть?

Решение: Общее число складывается из положений, когда оба флажка расположены по разные стороны от тела сигнальщика и положений, когда они расположены по одну сторону от тела сигнальщика. При подсчете числа возможных положений применяется правило суммы.

Правило произведения: Если объект А можно выбрать m способами, а после каждого такого выбора другой объект В можно выбрать (независимо от выбора объекта А) k способами, то пары объектов «А и В» можно выбрать m *k способами.

Примеры:

1. Сколько двузначных чисел существует?

Решение: Число десятков может быть обозначено любой цифрой от 1 до 9. Число единиц может быть обозначено любой цифрой от 0 до 9. Если число десятков равно 1, то число единиц может быть любым (от 0 до 9). Таким образом, существует 10 двузначных чисел, с числом десятков- 1.Аналогично рассуждаем и для любого другого числа десятков. Тогда можно посчитать, что существует 9 *10 = 90 двузначных чисел.

2. Имеется 2 ящика. В одном лежит m разноцветных кубиков, а в другом- k разноцветных шариков. Сколькими способами можно выбрать пару «Кубик-шарик»?

Решение: Выбор шарика не зависит от выбора кубика, и наоборот. Поэтому, число способов, которыми можно выбрать данную пару равно m *k .

3. Генеральная совокупность без повторений и выборки без повторений.

Генеральная совокупность без повторений - это набор некоторого конечного числа различных элементов a 1 , a 2 , a 3 , ..., a n .

Пример: Набор из n разноцветных лоскутков.

Выборкой объема k (k n ) называется группа из m элементов данной генеральной совокупности.

Пример: Пестрая лента, сшитая из m разноцветных лоскутков, выбранных из данных n .

Размещениями из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга либо составом элементов, либо порядком их расположения.

- число размещений из n по k .

Число размещений из n по k можно определить следующим способом: первый объект выборки можно выбрать n способами, далее второй объект можно выбрать n -1 способом и т.д.


Преобразовав данную формулу, имеем:

Следует помнить, что 0!=1.

Примеры:

1. В первой группе класса А первенства по футболу участвует 17 команд. Разыгрываются медали: золото, серебро и бронза. Сколькими способами они могут быть разыграны?

Решение: Комбинации команд-победителей отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 17 по 3.

2. Научное общество состоит из 25-ти человек. Необходимо выбрать президента общества, вице-президента, ученого секретаря и казначея. Сколькими способами это можно сделать?

Решение: Комбинации руководящего состава общества отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 25 по 4.

Перестановками без повторений из n элементов называются размещения без повторений из n элементов по n , т.е. размещения отличаются друг от друга только порядком следования элементов.

Число перестановок.

Примеры:

1. Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что они должны состоять из различных цифр?

Решение: Имеем перестановки из 5 элементов. 2. Сколькими способами можно собрать 6 разноцветных лоскутков в пеструю ленту?
Решение:
Имеем перестановки из 6 элементов.

Сочетаниями без повторений из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга только составом элементов.

- число сочетаний из n по k

Элементы каждого из сочетаний можно расставить способами. Тогда Примеры:

1. Если в полуфинале первенства по шахматам участвует 20 человек, а в финал выходят лишь трое, то сколькими способам и можно определить эту тройку?

Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки, вышедшие в финал, являются сочетаниями из 20 по 3.

2. Сколькими способами можно выбрать трех делегатов из десяти человек на конференцию?

Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки делегатов являются сочетаниями из 10 по 3.

Конспект:




4.Применение графов (схем) при решении комбинаторных задач.

В случае, когда число возможных выборов на каждом шагу зависит от того, какие элементы были выбраны ранее, можно изобразить процесс составления комбинаций в виде «дерева». Сначала из одной точки проводят столько отрезков, сколько различных выборов можно сделать на первом шагу. Из конца каждого отрезка проводят столько отрезков, сколько можно сделать выборов на втором шагу, если на первом шагу был выбран данный элемент и т.д.

Задача:

При составлении команд космического корабля учитывается вопрос и психологической совместимости участников путешествия. Необходимо составить команду космического корабля из 3 человек: командира, инженера и врача. На место командира есть 4 кандидата: a 1 , a 2 , a 3 , a 4 .На место инженера- 3: b 1 , b 2 , b 3 . На место врача- 3: c 1 , c 2 , c 3 . Проведенная проверка показала, что командир a 1 психологически совместим с инженерами b 1 и b 3 и врачами c 1 и c 3 . Командир a 2 - с инженерами b 1 и b 2 . и всеми врачами. Командир a 3 - с инженерами b 1 и b 2 и врачами c 1 и c 3 . Командир a 4 -со всеми инженерами и врачом c 2 . Кроме того, инженер b 1 не совместим с врачом c 3 , b 2 - с врачом c 1 и b 3 - с врачом c 2 . Сколькими способами при этих условиях может быть составлена команда корабля?

Решение:

Составим соответствующее «дерево».






Ответ: 10 комбинаций.

Такое дерево является графом и применяется для решения комбинаторных задач.