Электродные потенциалы. Направление ОВР. Стандартный электродный потенциал Уравнение электродного потенциала

11.01.2024 Природа

9.1. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЙ ПОТЕНЦИАЛ (ОВП): ТЕРМОДИНАМИЧЕСКИЙ СМЫСЛ, СВОЙСТВА. СТАНДАРТНЫЙ И ФОРМАЛЬНЫЙ ОВП

9.1.1. Термодинамический смысл. Таблица стандартных ОВП

ОВП определим как электрическую работу переноса электронов в ходе окислительно-восстановительного взаимодействия. При равновесии она равна максимальной химической работе, совершаемой в ходе этого взаимодействия, которая, в свою очередь, равна изменению энергии Гиббса Д

ОВП могут быть измерены различными способами - потенциометрическим, колориметрическим, вольтамперометри- ческим, полярографическим. Наиболее распространен потенциометрический метод, который и будет описан далее, в соответствии с направленностью данной книги. В рамках этого метода получим выражение для количественной оценки ОВП.

Для этого надо составить гальваническую ячейку, на электродах которой устанавливается равновесие оксред полуреак- ций с участием веществ, чью способность к окислению и восстановлению мы хотим охарактеризовать. Поступаем так же, как в гл. 3 при рассмотрении оксред взаимодействия двух систем, 1 и 2 по реакции (3.2),

проходящей на электродах гальванической ячейки (причём в гл. 3 Ох, = A, Red, = В, Red, = L, Ох, = М).

(показаны Гальвани-потенциалы на фазовых границах).

ЭДС ячейки, в которой проходит реакция (9.1):

Пусть система (2) - стандартный водородный электрод (с.в.э.). Тогда ячейка (9-1) запишется

т. е. Ох 2 = Н + , Rcd 2 =H 2 .

Реакция, проходящая в ячейке, такая:

При Р, 7’= const изменение энергии Гиббса, вызываемое обратимым прохождением этой реакции, равно

поскольку « н+ и Р н = 1. Для одного пробега реакции, где переносится nF Кл электричества, согласно (3.1) э.д.с. ячейки (9-11)

где

Та же формула была получена в гл. 3 для потенциала оксред-электрода нулевого рода:

Это и есть количественная мера того, что мы называем окислительно-восстановительным потенциалом или ОВП (окислительным, восстановительным).

Прежде чем продолжить изложение материала, необходимо сказать несколько слов о самом термине. В большинстве старых учебников использовался термин «окислительно-восстановительный потенциал» или редокс, или оксред потенциал, и до 1953 г. существовало 2 шкалы таких потенциалов - американская, в которой чем сильнее восстановительная способность Red формы системы, тем положительнее потенциал, и чем сильнее окислительная способность Ох формы, тем он отрицательнее (Li/Li + +3 V; 2СГ/СЬ -1.36 V, и т. п., см. известную монографию-справочник Латимера). В европейской системе - наоборот. С 1953 г. всюду принята европейская система.

Школой Б.П. Никольского пропагандировался термин «окислительный потенциал» вместо «окислительно-восстановительный», на том основании, что при европейской системе знаков чем выше окислительная способность системы, находящейся в растворе, тем потенциал выше (положительнее) (См. учебник БПН, книги НППЯ и ШПП).

Из рекомендаций ИЮПАК видно, что в определение характеристики окислительно-восстановительной способности системы введена опорная система Н"/Н 2 , и ее способность восстанавливать другую систему. Поэтому потенциал скорее надо называть «восстановительным», что и делается в известном учебнике обшей и неорганической химии А. Б. Никольского и А. В. Суворова, по которому учатся студенты СПбГУ. В то же время термин «окислительно-восстановительный» продолжает широко использоваться, потому что, по мнению многих авторов, которое разделяем и мы, этот термин отражает обе стороны взаимодействия.

Для электродов других родов, действие которых в конечном итоге сводится к оксред реакции, независимо от того, в какой фазе, в одной или разных, находятся Ох- и Red-формы, формула (9.6) даже упрощается. Если в таких электродах Red- или Ох- форма представляет собой однокомпонентные твердые, жидкие или газообразные фазы, активность ионов в них принимают равной 1, и формула для ОВП принимает вид (9.6 а, б).


Табл и на 9.1

Стандартные электродные потенциалы для некоторых окислительно-восстановительных полуреакций

в водной среде при 25 °С и давлении 1 атм

(http://en.wikipedia.org/wiki/Standard_electrode_potential_(data_page))

Полуреакция

Полуреакция

Sr + е~ - Sr

Cu 2 0 + H 2 0 + 2e = 2Cu + 20H

3N 2 + 2е~+ 2Н + = 2HN 3

Agl + e = Ag + I

La(OH) 3 (s) + Зе = La(s) + ЗОН

А1(ОН) 3 + Зе = А1 + ЗОН

H" + e = 1/2H,

A1F 6 3 - + Зе^ = А1 + 6F"

T1 2 0 3 + 3H,0 + 4e- = 2ТГ + 60 H

AgBr(s) + e = Ag(s) + Br

Zr0 2 (s) + 41-Г + =Zr(s) + 2Н,0

AgCl + e~ = Ag + Cl

Zn0 2 " + 2Н,0 + = Zn + 40Н

3- + e- = 4 "

Zn(OH) 3 " + 2e = Zn(s) + 4 OH

0 2 + 2H,0 + 4e = 40H

Fe(C 5 H 5) 2 + e" = Fe(C 5 H 5) 2

Cu + + e~ = Cu

2H 2 0 + 2e~ = H 2 + 20 H"

I 3 - + 2e~ = ЗГ

Cr 3+ + e = Cr +

l 2 (s) + 2e~ = 21

Eu 3+ + e = Eu 2+

PtCl 2 ’ + 2e- = Pt + 4CI

Табл и и а 9.1 (продолжение)

Полуреакция

Полуреакция

Fe’ + + е~ = Fe 2+

HC10 2 (aq) + 2H" + 2e = HClO(aq) + H 2 0

AgF + е~ = Ag + F~

MnO; + 4H + + 3e“ = MnO,(s) + 2H_,0

MnO“ + H + +" = HMnO"

Ce 4+ + e~ = Ce 3+

Mn0 2 (s) + 4H + + e = Mn 3+ + 2H,0

PbO, + SO 2 " +4H + + 2e = PbS0 4 + 2H,0

Cu 2+ + 2CN" + e =

ВЮГ + 2e + 6H + = Bi 2+ + 3H,0

I0 3 - + 5 H+ + 4e~ = HIO(aq) + 2H,0

H 2 0 2 (aq) + 2 H + + 2e = 2 H 2 0

ClOj + 2H‘+e“ = C10,(g) + H 2 0

Co 3+ + 2e" = Co +

0, + 4H + + 4e~ = 2H 3 0

MnO,(s) + 4 H + + 2 e = Mn 2+ + 2H,0

S,0 2 " + 2e = 2S0 2 "

Tl 3+ +2e = Tl +

0,(g) + 2H* + 2e = 0 2 (g) + H 2 0

Pb0 2 (s)+ 4H + 2e = Pb 2 - + 2H,0

HMn0 4 + 3H + + 2e- = Mn0 2 (s) + 2H,0

Мп0 4 + 8H + + 5e~ = Mn 2+ + 4H 2 0

F 2 + 2H + +2e~ = 2HF

HO", + H + + e H,0,(aq)

XeF + e =Xe+ F“

2HC10(aq) + 2H + + 2e = Cl 2 (g) + 2H,0

При а Ок = 1 И % ed = 1 ^Ox/Red = ^Ox/Red ПОЛучаеМ СТЭНДарТНЫЙ

ОВП. Значения стандартных ОВП приведены в Таблице 9.1, к которой мы не раз еще будем обращаться. Подобная таблица уже фигурировала в гл. 3, Табл. 3.2. Положение системы в таблице характеризует её окислительно-восстановительную способность. Полуреакции в Табл. 9.1 записаны по принципу Ох + Red. Положительные значения?"ox/Red означают, что эта реакция (восстановление) в стандартных условиях протекает самопроизвольно слева направо, отрицательные - наоборот. Чем отрицательнее ОВП системы, тем выше восстановительная способность её Red-формы, и наоборот, чем по- ложительнее ОВП, тем сильнее Ox-форма как окислитель.

Табл. 9.1 содержит в основном неорганические ОВ системы, в которых происходит изменение степени окисления тех или иных элементов, входящих в состав окислителя или восстановителя. Эти системы можно по-разному классифицировать: гомогенные и гетерогенные типа жидкость/газ или жид- кость/твердое тело, содержащие и не содержащие Н,0 и ионы нон комплексные ионы в одной или обеих формах; оксиа- нионы в одной или обеих формах, и т. д. При условии обратимости электродных реакций гомогенные системы того или иного вида могут образовать электроды нулевого рода (например, Fe 3+ /Fe 2+ . Fe(CN)^ + /Fe(CN)^ + ; гетерогенные - электроды 1-го, 2-го и 3-го рода (например, Me + /Me(s); СГ, AgCl(s)/Ag(s); Са 2+ , CaC 2 0 4 (s), PbC 2 0 4 /Pb). Электродный потенциал последних трех систем подчиняется формуле типа (9.6а), поскольку « Red = 1. Но все компоненты системы вносят вклад в стандартный ОВП:

И последнее. Чтобы подчеркнуть привязку ОВП к шкале с.в.э., в литературе часто используют для него обозначения Eh или Е н. Далее мы будем обозначать

Стандартный (нормальный) водородный электрод. Стандартный электродный потенциал. Таблицы стандартных окислительно-восстановительных потенциалов

В электрохимии стандартный электродный потенциал, обозначаемый Eo, E0, или EO, является мерой индивидуального потенциала обратимого электрода (в равновесии) в стандартном состоянии, которое осуществляется в растворах при эффективной концентрации в 1 моль/кг и в газах при давлении в 1 атмосферу или 100 кПа (килопаскалей). Объёмы чаще всего взяты при 25 °C. Основой для электрохимической ячейки, такой как гальваническая ячейка всегда является окислительно-восстановительная реакция, которая может быть разбита на две полуреакции: окисление на аноде (потеря электрона) и восстановление на катоде (приобретение электрона). Электричество вырабатывается вследствие различия электростатического потенциала двух электродов. Эта разность потенциалов создаётся в результате различий индивидуальных потенциалов двух металлов электродов по отношению к электролиту. Вычисление стандартных электродных потенциалов

Электродный потенциал не может быть получен эмпирически. Потенциал гальванической ячейки вытекает из "пары" электродов. Таким образом, невозможно определить величину для каждого электрода в паре, используя эмпирически полученный потенциал гальванической ячейки. Для этого установлен стандартный водородный электрод, для которого этот потенциал точно определён и равен 0,00 В, и любой электрод, для которого электронный потенциал ещё неизвестен, может быть соотнесён со стандартным водородным электродом с образованием гальванической ячейки - и в этом случае потенциал гальванической ячейки даёт потенциал неизвестного электрода.

Так как электродные потенциалы традиционно определяют как восстановительные потенциалы, знак окисляющегося металлического электрода должен быть изменён на противоположный при подсчёте общего потенциала ячейки. Также нужно иметь в виду, что потенциалы не зависят от количества передаваемых электронов в полуреакциях (даже если оно различно), так как они рассчитаны на 1 моль переданных электронов. Отсюда при расчёте какого-либо электродного потенциала на основании двух других следует проявлять внимательность.

Например:

(ур-е 1) Fe3+ + 3e? --> Fe(тв) -0.036 В

(ур-е 2) Fe2+ + 2e? --> Fe(тв) -0.44 В

Для получения третьего уравнения:

(ур-е 3) Fe3+ + e? --> Fe2+ (+0.77 В)

следует умножить потенциал первого ур-я на 3, перевернуть ур-е 2 (поменять знак) и умножить его потенциал на 2. Сложение этих двух потенциалов даст стандартный потенциал ур-я 3.

Таблица стандартных электродных потенциалов

Основная статья: Таблица стандартных электродных потенциалов

Чем больше стандартные восстановительные потенциалы, тем легче их можно восстановить, другими словами, тем более сильными окислителями они являются. И наоборот: большой отрицательный потенциал означает, что данная форма является сильным восстановителем. Например, F2 имеет 2,87 В, а Li+ имеет -3,05 В, фтор - окислитель, литий - восстановитель. Таким образом, Zn2+, стандартный восстановительный потенциал которого равен -0,76 В, может быть окислен любым другим электродом, стандартный потенциал которого больше -0,76 В. (напр., H+(0 В), Cu2+(0,16 В), F2(2,87 В)) и может быть восстановлен любым электродом, стандартный потенциал которого меньше -0,76 В (напр., H?(-2,23 В), Na+(-2,71 В), Li+(-3,05 В)).В гальванической ячейке, где самопроизвольная окислительно-восстановительная реакция заставляет ячейку производить электрический потенциал, Энергия Гиббса ДGo должна быть отрицательной, в соответствии со следующим уравнением:

ДGoяч = -nFEoяч

где n это количество молей электронов на моль продуктов, а F является постоянной Фарадея, ~96485 Кл/моль. Таким образом применимы следующие правила:

если Eoяч> 0, тогда процесс самопроизвольный (гальваническая ячейка)

если Eoяч< 0, тогда процесс несамопроизвольный (электролитическая ячейка)

Нестандартные условия

Стандартные электродные потенциалы даны при стандартных условиях. Однако, реальные ячейки могут действовать и при нестандартных условиях. При данном стандартном потенциале, потенциал при нестандартных эффективных концентрациях может быть вычислен с использованием уравнения Нернста:

Величины E0 зависят от температуры (кроме стандартного водородного электрода) и обычно относятся к стандартному водородному электроду при этой температуре. Для конденсированных фаз, величины потенциалов также зависят от давления.

Потенциал. Из курса физики известно, что электрический потенциал- работа по перемещению единичного положительного заряда из - данной точки пространства в бесконечность. Каждый электрод обладает каким-то электрическим потенциалом. Абсолютное значение потенциала электрода определить нельзя. Можно лишь сравнивать потенциалы различных электродов друг с другом. Для этого надо два электрода объединить в электрохимическую цепь. Для этого металлические части соединяются проводником, а растворы электролитов, в которые они погружены-стеклянной трубкой, заполненной раствором электролита (обычно хлорида калия). Эту трубку называют электролитическим ключом или солевым мостиком. Она обеспечивает ионную проводимость между растврами. Таким образом возникает замкнутая цепь или гальванический элемент, который показан на рис. 3.

Разность электрических потенциалов двух электродов в такой цепи называют электродвижущей силой силой цепи ЭДС(Рис. 4. Электрохимическая цепь со стандартным водородным электродом: -стандартный водородный электрод, 2-исследуемый электрод, 3 - электролитический ключ). Значение ЭДС может быть измерено, что позволяет сравнивать потенциалы электродов друг с другом. Обычно в качестве электрода, относительно которого определяют потенциалы всех систем, используют стандартный водородный электрод. Его потенциал условно принимают равным нулю.

Таким образом., электродным потенциалом называют ЭДС электрохимической цепи-гальванического элемента, составленного из исследуемого электрода и стандартного водородного электрода. Такая цепь изображена на рис. 4. Электродный потенциал обычно обозначают буквой Е.

Электрод, относительно которого производится измерение потенциала, называется электродом сравнения. Кроме водородного, в качестве электродов сравнения используют хлорсеребряный,каломельный и некоторые другие. Во всех случаях потенциал электрода сравнения принимается равным нулю. Можно перейти от одной шкалы потенциалов к другой. Например стандартный потенциал цинкового электрода по водородной шкале равен -- 0,76 В, а потенциал хлорсеребряного электрода + 0,22 В (по той же шкале). Следовательно, потенциал цинкового электрода по шкале хлорсеребряного электрода будет равен: -- 0,76 -- 0,22 = 0,98 В. Измерение электродных потенциалов.

Точно измерить электродный потенциал достаточно трудно, так как необходимо, чтобы в процессе измерения не нарушалось равновесие на электродах. По этой причине невозможно получить точное значение Е с помощью обычного вольтметра: если мы замкнем цепь, используя вместо проводника вольтметр, то в ней начнет протекать довольно большой ток, который нарушит равновесие на электродах. Для измерения можно использовать специальные вольтметры с высоким входным сопротивлением (более 1012 Ом). При включении в цепь такого прибора протекающий ток слишком мал для оказания существенного влияния на электродное равновесие.

Стандартный электродный потенциал-это потенциал электрода при стандартных условиях, его обозначают символом Е°. Эти потенциалы определены для многих окислительно-восстановительных систем и обычно приводятся в химических справочниках. Если электроды (на пример, металлические электроды 1-го рода) расположить в порядке возрастания потенциала, то мы получим таблицу, называемую рядом стандартных электродных потенциалов. Этот ряд часто называют рядом напряжений, однако этот термин устарел и его лучше не использовать.

При помощи ряда стандартных электродных потенциалов можно характеризовать некоторые химические свойства металлов. Например, его применяют для выяснения, в какой последовательности восстанавливаются ионы металлов при электролизе, а также при описании других свойств металлов.

Чем меньше алгебраическая величина потенциала, тем выше восстановительная способностьэтого металла и тем ниже окислительная способность его ионов. Как следует из этого ряда, металлический литий - самый сильный восстановитель, а золото-самый слабый. И наоборот, ион золота Аu3+-самый сильный окислитель, а ион лития Li+ -самый слабый.

Каждый металл в ряду стандартных электродных потенциалов обладает способностью вытеснять все следующие за ним металлы из растворов их солей. Однако это не означает, что вытеснение обязательно происходит во всех случаях. Например, алюминий вытесняет медь из раствора хлорида меди (II) СuСl2, но практически не вытесняет ее из раствора сульфата меди (II) CuS04. Это объясняется тем, что хлорид-ион Сl- быстро разрушает защитную поверхностную пленку на алюминии, а сульфат-ион SO4 2-практически не разрушает ее.

Все металлы, имеющие отрицательные значения стандартных электродных потенциалов, т.е. стоящие в ряду до водорода, вытесняют водород из разбавленных кислот, анионы которых не проявляют окислительных свойств (например, из НСl или разбавленной H2S04) и растворяются в них. Однако есть и исключения. Например, свинец практически не растворяется в серной кислоте. Это обусловлено образованием на поверхности металла защитной пленки труднорастворимого сульфата свинца PbS04, который затрудняет контакт металла с раствором кислоты. Поэтому можно сделать вывод, что пользоваться рядом стандартных электродных потенциалов следует с учетом всех особенностей рассматриваемых процессов.

Стандартные потенциалы окислительно-восстановительных реакций . Возможность протекания любой окислительно-восстановительной реакции в реальных условиях обусловлена рядом причин: температурой, природой окислителя и восстановителя, кислотностью среды, концентрацией веществ, участвующих в реакции, и т. д. Учесть все эти факторы бывает трудно, но, помня о том, что любая окислительно-восстановительная реакция протекает с переносом электронов от восстановителя к окислителю, можно установить критерий возможности протекания такой реакции.

Количественной характеристикой окислительно-восстановительных процессов являются нормальные окислительно-восстановительные потенциалы окислителей и восстановителей (или стандартные потенциалы электродов).

Чтобы понять физико-химический смысл таких потенциалов, необходимо проанализировать так называемые электрохимические процессы.

Химические процессы, сопровождающиеся возникновением электрического тока или вызываемые им, называются электрохимическими.

Чтобы понять природу электрохимических процессов, обратимся к рассмотрению нескольких достаточно простых ситуаций. Представим себе металлическую пластинку, погруженную в воду. Под действием полярных молекул воды ионы металла отрываются от поверхности пластинки и гидратированными переходят в жидкую фазу. Последняя при этом заряжается положительно, а на металлической пластинке появляется избыток электронов. Чем дальше протекает процесс, тем больше становится заряд, как пластинки, так и жидкой фазы.

Благодаря электростатическому притяжению катионов раствора и избыточных электронов металла на границе раздела фаз возникает так называемый двойной электрический слой, который тормозит дальнейший переход ионов металла в жидкую фазу. Наконец, наступает момент, когда между раствором и металлической пластинкой устанавливается равновесие, которое можно выразить уравнением:

или с учетом гидратации ионов в растворе:

Состояние этого равновесия зависит от природы металла, концентрации его ионов в растворе, от температуры и давления.

При погружении металла не в воду, а в раствор соли этого металла равновесие в соответствии с принципом Ле Шателье смещается влево и тем больше, чем выше концентрация ионов металла в растворе. Активные металлы, ионы которых обладают хорошей способностью переходить в раствор, будут в этом случае заряжаться отрицательно, хотя в меньшей степени, чем в чистой воде.

Равновесие можно сместить вправо, если тем или иным способом удалять электроны из металла. Это приведет к растворению металлической пластинки. Наоборот, если к металлической пластинке подводить электроны извне, то на ней будет происходить осаждение ионов из раствора.

При погружении металла в раствор на границе раздела фаз образуется двойной электрический слой. Разность потенциалов, возникающую между металлом и окружающей его жидкой фазой, называют электродным потенциалом. Этот потенциал является характеристикой окислительно-восстановительной способности металла в виде твердой фазы.

У изолированного металлического атома (состояние одноатомного пара, возникающее при высоких температурах и высоких степенях разрежения) окислительно-восстановительные свойства характеризуются другой величиной, называемой ионизационным потенциалом. Ионизационный потенциал -- это энергия, необходимая для отрыва электрона от изолированного атома.

Абсолютное значение электродного потенциала нельзя измерить непосредственно. Вместе с тем не представляет труда измерение разности электродных потенциалов, которая возникает в системе, состоящей из двух пар металл - раствор. Такие пары называют полуэлементами. Условились определять электродные потенциалы металлов по отношению к так называемому стандартному водородному электроду, потенциал которого произвольно принят за ноль. Стандартный водородный электрод состоит из специально приготовленной платиновой пластинки, погруженной в раствор кислоты с концентрацией ионов водорода 1 моль/л и омываемой струёй газообразного водорода под давлением 105 Па, при температуре 25 °С.

Ряд стандартных электродных потенциалов. Если пластинку металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при 25 °С, и характеризует стандартный электродный потенциал металла, обозначаемый обычно как Е°.

Стандартные потенциалы электродов, выступающих как восстановители по отношению к водороду, имеют знак “-”, а знак “+” имеют стандартные потенциалы электродов, являющихся окислителями.

Металлы, расположенные в порядке возрастания их стандартных электродных потенциалов, образуют так называемый электрохимический ряд напряжений металлов: Li, Rb, К, Ва, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au.

Ряд напряжений характеризует химические свойства металлов:

1. Чем более отрицателен электродный потенциал металла, тем больше его восстановительная способность.

2. Каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые стоят в электрохимическом ряду напряжений металлов после него.

3. Все металлы, имеющие отрицательный стандартный электродный потенциал, т. е. находящиеся в электрохимическом ряду напряжений металлов левее водорода, способны вытеснять его из растворов кислот.

Как и в случае определения значения Е° металлов, значения Е° неметаллов измеряются при температуре 25 °С и при концентрации всех атомных и молекулярных частиц, участвующих в равновесии, равной 1 моль/л.

Алгебраическое значение стандартного окислительно-восстановительного потенциала характеризует окислительную активность соответствующей окисленной формы. Поэтому сопоставление значений

стандартных окислительно-восстановительных потенциалов позволяет ответить на вопрос: протекает ли та или иная окислительно-восстановительная реакция?

Количественным критерием оценки возможности протекания той или иной окислительно-восстановительной реакции является положительное значение разности стандартных окислительно-восстановительных потенциалов полуреакций окисления и восстановления.

ВОДОРОДНЫЙ электрод в электрохимии - обычно платинированная пластина, погруженная в раствор кислоты с определенной концентрацией ионов Н+ и омываемая газообразным водородом. При давлении водорода 0,1 МПa и термодинамической активности его ионов, равной единице, потенциал водородного электрода условно принят равным нулю. Такой водородный электрод называется стандартным, он служит электродом сравнения, от которого отсчитывают потенциалы других электродов.

32 Термодинамика протекания электродных процессов. Самопроизвольность протекания окислительно-восстановительных реакций. Связь ЭДС гальванического элемента с энергией Гиббса. Связь ЭДС с константой равновесия

Любые химические реакции связаны с перемещением электронов, поэтому могут быть использованы для получения электрического тока. При этом источником электрической энергии является энергия, освобождающаяся при химической реакции. Такое превращение энергии химической реакции в электрическую возможно лишь при помощи специального устройства, называемого гальваническим элементом. Оно позволяет направлять поток электронов по металлическим проводникам.

Простое сжигание водорода сопровождается большим выделением тепла. Если его провести при постоянном объеме, например, в калориметрической бомбе, то ДU = -284,5 кДж/моль. Если эту же реакцию осуществить в гальваническом элементе электрохимическим путем, то часть этой убыли внутренней энергии может быть использована для получения электрического тока. Схема такого гальванического элемента показана на рис: IX.1. В водный раствор (например, NaOH) погружены два платиновых электрода. Левый электрод омывается пузырьками водорода, а правый - кислородом. Водород в левой части этого гальванического элемента растворяется в платине и ионизируется. Вследствие большого сродства к молекулам воды некоторое количество протонов переходит в слой раствора, непосредственно прилегающий к электроду. При этом образуются ионы гидроксония Н3О+ - они обозначены плюсами в правой части рис. IX. 1, а электроны (минусы) остаются на поверхности платинового электрода. Из-за электростатического притяжения между электронами и ионами гидроксония последние остаются вблизи электрода и не уходят в объем раствора. Благодаря этому на границе металл-раствор возникает так называемый двойной электрический слой, подобный двум обкладкам конденсатора. На поверхности правого электрода происходит реакция образования ионов гидроксила:

3/2O2г + H2Oж + 2e = 2OH-

в результате которой из металла удаляются два электрона. Поверхность металла поэтому заряжается положительно и на ней также образуется двойной электрический слой, но противоположного знака. Если соединить левый и правый электроды металлическим проводником, то по нему потечет электрический ток. Стрелка на рис. IX.1 указывает направление потока электронов. Разность электрических потенциалов на электродах разомкнутого гальванического элемента называется его электродвижущей силой (э. д. с.).

Очевидно поток электронов, возникающий в элементе может быть использован для производства работы, например, для вращения электрического мотора. Протекание тока приводит к уменьшению зарядов двойных электрических слоев. Поэтому ионы Н3О+ и ОН- получают возможность удаляться от электродов и образовывать в растворе нейтральные молекулы воды. Одновременно вследствие реакций на электродах вновь восстанавливаются двойные слои. Происходящие на электродах и в растворе изменения отражаются следующими уравнениями:

H2г = 2H+ + 2e;

3/2 O2г + H2Oж + 2e = 2OH-;

2H+ + 2OH- = 2H2Oж,

сумма которых представляет собой реакцию образования воды:

H2г + 1/2O2г = H2Oж,

Таким образом, одну и ту же реакцию образования воды из элементов можно осуществить двумя различными способами. Какой из этих способов выгоднее с точки зрения превращения энергии химической реакции в работу? В первом способе при сжигании водорода в калориметрической бомбе (V = const) при 298 К уменьшение внутренней энергии равно количеству выделившегося тепла -ДU = 284,5 кДж/моль, а работа равна нулю.

Во втором случае часть этого изменения внутренней энергии (ДG) может быть превращена в электрическую работу. Если реакция в гальваническом элементе проводится обратимо, то сопровождающая ее убыль энергии Гиббса полностью идет на производство электрической работы.

В рассматриваемом случае ДG0 = -237,2 кДж/моль и, следовательно, только?47 кДж/моль переходит в тепло. Этот пример показывает, что вообще энергию, освобождающуюся при горении природных видов топлива, выгоднее непосредственно преобразовывать в электрическую, так как к. п. д. тепловых машин и тепловых электростанций невелик. Описанный водородно-кислородный элемент является примером так называемых топливных элементов.

Работы по созданию таких элементов получили в последнее время широкое развитие в связи с новыми задачами техники. В этих элементах топливо и окислитель должны храниться отдельно и подаваться к электродам, на которых осуществляются электрохимические реакции. При этом элемент может работать непрерывно, если к нему подводятся реагенты и отводятся продукты реакции, что особенно удобно при использовании жидких и газообразных веществ. Вместо сжигания угля возможно использовать реакцию Ст + О2г = СО2г для получения электрического тока.

Очевидно, что в реальных условиях гальванические элементы работают необратимо, поэтому в работу превращается лишь часть изменения энергии Гиббса реакции, протекающей в элементе. Повторим, что гальванический элемент может работать при условии протекания в нем самопроизвольной химической реакции или какого-либо другого самопроизвольного процесса, сопровождающегося убылью энергии Гиббса.

Если к рассматриваемому гальваническому элементу приложить извне достаточно большую разность потенциалов, превышающую его э. д. с. и имеющую противоположное направление, то будет происходить разложение воды с выделением водорода и кислорода. Таким образом, процессы получения электрического тока в гальванических элементах и электролиза взаимно противоположны.

Особенностью электрохимического процесса в гальваническом элементе является важная для теории возможность его осуществления в условиях весьма близких к обратимости. Это достигается благодаря потенциометрическому методу, в котором э. д. с. изучаемого гальванического элемента практически полностью компенсируется с помощью противоположно направленной э.д. с. внешнего источника. Такой прием позволяет измерять э.д.с. при отсутствии тока в цепи, т.е. когда элемент не работает, а его э.д.с. максимальна. Контроль за отсутствием тока проводят гальванометрами (нуль-инструментами) высокой чувствительности. Они дают отклонение при прохождении тока силой 10-8 - 10-9 А. Такой слабый ток при прохождении через электролит даже в течение многих лет не смог бы выделить сколько-нибудь заметных количеств вещества.

Рис. IX.2. Схема измерения э.д.с. методом компенсации.

Принципиальная схема измерения э. д. с. гальванического элемента компенсационным методом показана на рис. IX.2. Постоянный ток от вспомогательной батареи ВБ подается на концы реохорда АВ - проволоки с постоянным сечением. Поэтому падение напряжения вдоль реохорда пропорционально длине соответствующего отрезка на прямой АВ. С помощью подвижного контакта С можно отбирать произвольную часть падения напряжения между точками А и В. Из рис. IX.2 видно, что напряжение, снимаемое с любого участка реохорда, например АС, направлено навстречу э. д. с. элемента X.

Передвигая контакт С по реохорду, находят такое положение, при котором нуль-гальванометр Г указывает отсутствие тока в цепи АХГС. Это означает, что падение потенциала от ВБ на отрезке АС полностью компенсирует э. д. с. элемента X.

Если э. д. с. вспомогательной батареи ВБ равна ЕБ, то э. д. с. элемента X ЕX определяется из пропорции:

ЕХ/ЕБ = АС/АВ, откуда ЕX = (АС/АВ) ЕБ.

Для того, чтобы откалибровать вспомогательную батарею перед измерениями ЕX, вместо элемента X включают другой, э. д. с. которого точно известна, например стандартный элемент Вестона. Устройство этого элемента будет описано ниже.

Повторим, что определяемая таким образом э. д. с. максимальна, так как при измерении отсутствует падение потенциала как вне, так и внутри элемента. Работа, совершаемая элементом с ничтожно малым током при обратимом проведении процесса была бы максимальной.

Теоретический и практический интерес представляют гальванические элементы с металлическими электродами. Рассмотрим, например, реакцию Znт + CuSО4водн. р-р. = ZnSО4водн. р-р + Cuт или Znт + Cu2+ = Zn+2 + +Cuт, которая может быть осуществлена двумя путями. Один из них является полностью необратимым. Цинковую пластинку помещают в водный раствор медного купороса, при этом происходит выделение металлической меди и растворение цинка. Электроны переходят от цинка непосредственно к меди, и реакция протекает без производства работы, а сопровождается только выделением тепла. В случае водородно-кислородного элемента, можно создать условия, в которых электроны будут двигаться по металлическому проводнику и совершать работу. Это достигается в гальваническом элементе, где цинковый электрод погружен в раствор ZnSO4, а медный электрод в раствор СиSO4.

Растворы отделены друг от друга пористой (керамической) перегородкой, препятствующей их смешению, но обеспечивающей прохождение электрического тока вследствие диффузии ионов через поры. Такой элемент, на электродах которого образуются двойные электрические слои, был сконструирован русским электрохимиком Б.С. Якоби.

Величина и знак электрических зарядов в двойных слоях пределяются работой удаления электрона из металла и энергией гидратации его ионов. В раствор легко будут переходить те металлы, у которых меньше работа выхода электронов и больше энергия гидратации ионов, т.е. менее благородные металлы. Так как цинк менее благороден, чем медь, то он зарядится более отрицательно по сравнению с медью. Если соединить оба электрода металлическим проводником, то электроны будут перемещаться от цинка к меди. Вследствие этого ионы цинка Zn2+ не удерживаются в двойном слое притяжением электронов, переходят в объем раствора, а перешедшие на медный электрод электроны разряжают ионы Cu2+, переводя их в металлическое состояние.

Следовательно, в процессе работы элемента происходит растворение цинкового электрода и осаждение меди на медном электроде. Чтобы элемент работал, цепь должна быть замкнутой, т.е. между растворами должен быть электрический контакт. Перенос тока внутри элемента осуществляется ионами. В элементе переход электронов от цинка к меди происходит не в условиях непосредственного контакта этих металлов, а при помощи проводника. Суммарная реакция в элементе складывается из двух пространственно разделенных электродных процессов.

Реакции, протекающие в гальванических элементах являются окислительно-восстановительными. В рассматриваемом случае окисляется цинк, который теряет электроны, а восстанавливается медь, приобретающая электроны. Вообще любая окислительно-восстановительная реакция может быть использована для получения электрического тока с помощью гальванического элемента. Как упоминалось, такой реакцией может быть горение любого вида топлива.

При схематической записи гальванических элементов границы между фазами отмечаются вертикальными линиями. При условии, что на границе двух жидкостей (в данном случае растворов ZnSO4 и CuSO4) нет разности потенциалов, ее обозначают двумя вертикальными линиями. Схема рассмотренного элемента имеет следующий вид:

Zn ? ZnSO4 ? CuSO4 ? Cu.

Принято записывать подобные схемы таким образом, чтобы левый электрод был отрицательным (электроны текут по металлическому проводнику слева направо и в том же направлении переносится ионами положительное электричество внутри элемента). Такая запись отвечает протеканию реакции, сопровождающейся убылью энергии Гиббса и положительной величине э. д. с.

Гальванические элементы могут быть построены не только с использованием водных растворов электролитов, но и с, применением расплавов. Примером такого элемента может служить цепь Ag ? AgBr ? Br2, в которой левый электрод серебряный, а правый - представляет собой графит, омываемый газообразным бромом, а электролитом является расплавленное AgBr. На левом электроде растворяется серебро: Agт > Ag+ + e, а на правом - адсорбированный графитом бром: 1/2Br2г + e = Br-. Таким образом, в элементе происходит реакция: Agт + 1/2Br2г = AgBrж.

В последнее время приобрели большое значение гальванические элементы с твердыми электролитами, имеющими кислородную проводимость (см. гл. VIII), например,

Левый электрод представляет собой смесь железа и его оксида. Здесь происходит реакция окисления железа ионами О2-, приходящими через твердый электролит. При этом освобождаются электроны, и электрод получает отрицательный заряд. На правом электроде, состоящем из смеси Мо и МоО3, происходит восстановление оксида. Это сопровождается поглощением электронов таким образом, что электрод заряжается положительно, а освободившиеся ионы О2 могут мигрировать через электролит к левому электроду. Реакция на электроде изображается следующим уравнением 3Feт + 3О2- = 3FеОт + 6е; на правом электроде: МоО3т + 6е = Мот + 3О2-.

Заметим, что сумма этих двух реакций 3Fет + МоОт = 3FеОт + Мот есть процесс восстановления оксида молибдена железом, самопроизвольное протекание которого является источником электрической энергии производимой элементом.

Из рассмотренных примеров видно, что реакцию, протекающую в гальваническом элементе, можно представить в виде двух отдельных электродных реакций.

Можно предположить, что э. д. с. гальванического элемента должна зависеть от природы реагирующих веществ, их концентраций и температуры. Чтобы найти выражения для этих зависимостей, необходимо рассмотреть термодинамические соотношения, характеризующие работу гальванического элемента.

Пусть в гальваническом элементе протекает реакция: M + Nn+ = Mn+. Работа, производимая элементом при расходе 1 моля М, определяется произведением количества электричества nF на величину э. д. с. Е, т.е. W = nFE, где п - число молей электронов, протекающих через цепь; F - число Фарадея, равное 96493 Кл. Например, для реакции Zn + Cu2+ = Zn2+ + Cu, n = 2. Если элемент работает обратимо при постоянных давлении и температуре, то произведенная им работа равна убыли энергии Гиббса, т.е. ДG = W:

ДG = -nFE = -96493E. (IX.1)

Если элемент работает необратимо, то nFE < -ДG, т.е. э.д.с. меньше, чем при обратимом проведении реакции. Выражая E в В, получаем величину ДG в Дж.

Таким образом, если известно стехиометрическое уравнение протекающей в гальваническом элементе реакции и табличные данные об изменении энергии Гиббса, можно рассчитать э. д. с.

Так, для рассмотренного выше водородно-кислородного элемента, работающего за счет энергии, освобождающейся при реакции Н2г + 1/2О2г = Н2Ож, для которой ДG 0

298 = -237200 Дж, п = 2, рH2 = рO2 = 1.

/n·96493 = -(-237200/2)·96493 ?? 1,2 В.

Из уравнения IX.1 следует, что измерение э. д. с. гальванического элемента позволяет найти изменение энергии Гиббса протекающей в нем реакции. Поэтому метод э. д. с. широко используется для определения термодинамических свойств веществ.

В приведенном выше примере этот метод позволяет найти ДG реакции восстановления МоО3 железом. Зная стандартное изменение энергии Гиббса при образовании FеО(ДG 0 f FeO) по найденному значению ДG, можно найти энергию Гиббса образования МоО3 из уравнения:

Зависимость э. д. с. от температуры. Поскольку энергия Гиббса есть функция температуры, то и э. д. с. гальванического элемента также должна зависеть от температуры.

Для нахождения этой зависимости воспользуемся уравнением Гиббса-Гельмгольца: ДG = ДH + T(?ДG/?T)p подставив в него выражение ДG через э. д. с. При этом получим -nEF = ДH - TnF(dE/dT) или

ДH = nF, (IX.2)

ДH = W - TnF(dE/dT). (IX.3)

Сначала представим себе, что гальванический элемент, помещенный в калориметр, является коротко замкнутым. В этом случае производимая им электрическая энергия полностью превратится в тепло, количество которого равно энтальпии реакции ДH, и, следовательно, работа будет равна нулю.

Пусть теперь реакция в элементе осуществляется обратимо, например, провода от электродов выведены из калориметра, подведены к мотору, и электрический ток производит работу. Тогда часть освобождающейся при реакции энергии превратиться в электрическую работу W, а другая часть Q останется в виде тепла и будет измерена в калориметре. Согласно первому закону термодинамики

ДH = W - Q (IX.4)

Сопоставление уравнений (IX.3) и (IX.4) показывает, что

Q = TnF(dE/dT). (IX.5)

Очевидно, чем ближе протекание реакций в гальваническом элементе к условиям обратимости, тем бомльшая часть ДG превращается в работу. Величина Q, которая характеризует связанную энергию, определяет количество тепла, неизбежно выделяющегося (или поглощающегося) в том случае, когда элемент работает обратимо. Так как (?ДG/?T)р = -ДS и (?ДG/?Т)р = -пF(dЕ/dТ), то

ДS = nF(dE/dT), (IX.6)

и, следовательно, измерения температурной зависимости э. д. с. позволяют вычислить изменение энтропии при реакции, протекающей в гальваническом элементе. Следует подчеркнуть, что гальванический элемент может работать как с выделением, так и с поглощением тепла. В последнем случае он превращает в работу тепло окружающей среды. Это не находится в противоречии со вторым законом термодинамики, так как процессы в гальванических элементах не являются непрерывными и прекращаются при израсходовании материала электродов.

Знак и величина Q определяют температурную зависимость э. д. с. Если при работе элемента выделяется тепло, т.е. Q < 0, то температурный коэффициент э. д. с. dE/dT < 0. Это наиболее часто встречающийся случай, так как большинство элементов работает с выделением тепла. Наоборот, при Q > 0 э. д. с. растет с температурой.

Для гальванических элементов, служащих в качестве эталонов, при электрических измерениях подбирают такие реакции, в которых Q весьма мало и dЕ/dТ близко к нулю. Так, зависимость э. д. с. от температуры широко используемого стандартного элемента Вестона выражается уравнением:

E = 1,0183 - 0,0000406 (t - 20) В.

Он составлен по схеме: Cd ? CdSO4 ? ? Hg2SO4 ? Hg, и в нем протекает реакция Cdт + 2Hg+ = Cd2+ + 2Hgж1.

В качестве примера применения уравнений (IX.4) и (IX.5) вычислим величину dE/dT для элемента, в котором протекает реакция Znт + 2AgCl = ZnCl2 + 2Agт

ДH = 217760 Дж, а E = 1,015 В при 0° C. Отсюда

Q = -ДH = 217760 - 2·96493·1,015 = 21880 Дж.

dE/dT = -218807(273·2·96493) ?? - 4·10-4 В/К.

Примером элемента с положительным температурным коэффициентом является ячейка Hg ? Hg2Cl2, KCl ? KOH ? Hg2O ? Hg, в которой протекает реакция Hg2Cl2 + 2KOH = 2KCl + Hg2O + H2O.

Левый электрод этого элемента называемый каломельным, часто используется в электрохимических измерениях. Он состоит из жидкой ртути, находящейся в контакте с твердой каломелью Hg2Cl2 и водным раствором какого-либо сильного электролита, например KС1. Реакция, идущая в рассматриваемом элементе, является эндотермической, ДH = 13720 Дж, а W = 31570 Дж. Таким образом Q = 13720 + 31570 = 45240 Дж, т.е. элемент поглощает из окружающей среды тепло, равное 45240 Дж. Часть этого тепла, равная 31570 Дж, идет на производство работы.

Зависимость э. д. с. от концентраций электролитов, участвующих в реакции, может быть: найдена при помощи уравнения изотермы химической реакции.

Пусть в гальваническом элементе протекает реакция A + B = 2D, при этом ДG = RTlnK + RTln (c 2 D/cAcB). Подставляя вместо ДG величину - nEF и разделив обе части уравнения на -пF, получим E = RTln(K/nF) - . или, обозначая величину RTlnK/nF, зависящую только от температуры, через E0, будем иметь:

E = E0 - (RT/nF. (IX.7.)

Величина E0 называется стандартной э. д. с. элемента. Она характеризует элемент, в котором концентрации всех участвующих в реакции веществ равны единице, а изменение энергии Гиббса равно стандартному ДG0. Заменив в уравнении (IX.7) натуральный логарифм десятичным, получим для температуры 25 °C.

Очевидно, что для электролитов нельзя просто пользоваться аналитическими концентрациями соответствующих веществ, а необходимо учитывать диссоциацию и взаимодействие ионов. В связи с этим возникает задача определения активности электролитов.

Электродом в электрохимииназывается поверхность раздела между проводником электрического тока с электронной проводимостью и проводником электрического тока с ионной проводимостью, или, иными словами, место, где электронный механизм переноса электрического заряда изменяется на ионный (и наоборот). В более узком смысле слова электродом часто называют проводник электрического тока с электронной проводимостью.

Рис. 7.1. Схематическое изображение гальванического элемента

Проведём реакцию взаимодействия Sn 2+ иFe 3+ ­ так, чтобы процессы окисления и восстановления были пространственно разделены (рис. 7.1). В сосуде, содержащемSn 2+ иSn 4+ , будут проходить следующие процессы. ИоныSn 2+ будут отдавать электроны платиновой проволоке и превращаться вSn 4+ . Параллельно будет происходить и обратный процесс. Через некоторое время в системе установится равновесие:

Sn 4+ + Sn 2+

Рис. 7.2. Возникновение электродного потенциала

Вследствие установления данного равновесия поверхность платиновой проволоки и раствор вблизи неё будут иметь различный заряд, произойдёт образование так называемого «двойного электрического слоя» (рис. 7.2). На границе раздела «металл - раствор» возникнет разность потенциалов, называемая электродным потенциалом .

Аналогичные процессы будут происходить и в системе, содержащей Fe 2+ иFe 3+ . Однако, так как ионыFe 2+ обладают меньшей способностью отдавать электроны, чемSn 2+ , а ионыFe 3+ , соответственно, большей способностью принимать электроны, чемSn 4+ , то поверхность платиновой проволоки, опущенной в раствор, содержащийFe 2+ иFe 3+ , будет заряжена менее отрицательно, чем опущенной в растворSn 2+ иSn 4+ .

Соединим платиновые пластинки, опущенные в растворы, металлическим проводником. Для замыкания цепи соединим оба раствора солевым мостиком - трубкой, содержащей раствор KCl. В полученной системе, называемойгальваническим элементом , начнёт протекать электрический ток. Если включить в данную цепь потенциометр или высокоомный вольтметр, то можно измерить её ЭДС, которая будет характеризовать способность ионовFe 3+ получать электроны отSn 2+ .

Абсолютную величину электродного потенциала индивидуального электрода определить невозможно. Возможно определить лишь разность потенциалов двух электродов. В принципе, это можно делать для каждой конкретной реакции. Однако гораздо более удобно выбрать какой-нибудь один стандартный электрод, относительно которого затем будут проводиться все измерения электродных потенциалов. В качестве такого электрода сравнения используется стандартный водородный электрод.

Рис. 7.3 Стандартный водородный электрод

Стандартный водородный электрод представляет собой платиновую пластинку, насыщенную водородом, которая находится в растворе H 2 SO 4 илиHClс(рис. 7.3). Для увеличения адсорбирующей способности платину покрывают слоем губчатой платины. Для насыщения поверхности платины водородом через раствор пропускают газообразныйH 2 (р = 1 атм). Между водородом, растворённым в платине, и гидратированными катионами водорода, находящимися в растворе, устанавливается равновесие:

2H + +  H 2 (Pt)

Потенциал стандартного водородного электрода принят равным нулю при любой температуре.

Стандартный электродный потенциал полуреакции (E 0 , 0) -это ЭДС гальванического элемента, состоящего из находящегося в стандартных условиях электрода, на котором протекает данная полуреакция, и стандартного водородного электрода.

Водородный электрод неудобен в работе, поэтому на практике в качестве стандартных используются вторичные стандартные электроды, потенциал которых относительно СВЭ определён с высокой точностью. Одним из таких электродов является хлоридсеребряный электрод,

Знак стандартного потенциала полуреакции зависит от выбранного направления полуреакции. При изменении направления знак меняется на противоположный. Например, для полуреакции (А) E 0 = +0,771 В, следовательно, для обратной ей полуреакции (Б)E 0 = - 0,771 В.

(А) Fe 3+ +  Fe 2+ (Б) Fe 2+ -  Fe 3+

Потенциал, характеризующий процесс восстановления, например, такой как (А), называется восстановительным , а потенциал, характеризующий процесс окисления, например, такой как (Б) -окислительным . В настоящее время величину электродного потенциала полуреакции принято относить кпроцессу восстановления окисленной формы

Чем больше величина электродного потенциала, тем более сильными окислительными свойствами обладает окисленная форма вещества и более слабыми восстановительными свойствами его восстановленная форма. Например, перманганат-ион при стандартных условиях в кислой среде является более сильным окислителем, чем дихромат-ион.

Cr 2 O 7 2- + 14H + +  2Cr 3+ + 7H 2 O E 0 = +1,33 В

MnO 4 - + 8H + +  Mn 2+ + 4H 2 O E 0 = +1,51 В

Если для интересующей нас полуреакции значение Е 0 в справочной литературе, по той или иной причине, не приведено, то его можно рассчитать, используя потенциалы других полуреакций.

Пример 7.1. Рассчитайте величину Е 0 для окислительно-восстановительной пары Fe 3+ / Fe , если известно, что

Fe 2+ + 2Fe(= -0,473В)Fe 3+ +Fe 2+ (= +0,771В)

При сложении первого и второго уравнения мы получим уравнение интересующей нас полуреакции:

Fe 3+ + 3Fe

Значение стандартного электродного потенциала данной полуреакции не будет равно сумме и, т.е. 0,298В. Величина Е 0 не зависит от количества вещества (потенциал - это интенсивная, а не экстенсивная величина), поэтомупотенциалы нельзя складывать .

В отличие от электродного потенциала Gзависит от количества вещества, поэтомуG 3 =G 1 +G 2 . Следовательно

Разность электродных потенциалов окислителя, участвующего в прямой реакции, и окисленной формы восстановителя, образующегося в процессе реакции, называется ЭДС реакции (Е) .

По величине ЭДС можно судить о том, возможно или нет самопроизвольное протекание данной реакции.

Пример 7.2. Определить, может ли самопроизвольно протекать при стандартных условиях реакция окисления иодид-ионов ионами Fe 3+ .

2Fe 3+ + 2I -  2Fe 2+ + I 2

=
-
= 0,771 - 0,536 = 0,235В

Данная реакция может самопроизвольно протекать в прямом направлении.

1. В кислой среде ни в левой, ни в правой части не должно быть ионов Уравнивание осуществляется за счет ионов и молекул воды.

2. В щелочной среде ни в левой, ни в правой части не должно быть ионов . Уравнивание осуществляется за счет ионов и молекул воды.

3. В нейтральной среде ни ионов , ни в левой части быть не должно. Однако в правой части среди продуктов реакции они могут появиться.

4. Рассмотрим, как работают предложенные схемы на конкретных примерах .

5. Задача. Закончить уравнение реакции между бихроматом калия и соляной кислотой.

6. Ион содержит хром в его высшей степени окисления, следовательно, может выступать только в роли окислителя. По схеме составим полуреакцию, учитывая, что среда кислотная (HCl).
Полуреакция восстановления:

7. Ионы могут только окисляться, т.к. хлор имеет самую низшую степень окисления. Составим полуреакцию окисления:

9. Суммируем сначала левые, а затем правые части полуреакций, не забывая предварительно умножить множитель на коэффициент, если он стоит перед формулой.

11. Получили сокращенное ионное уравнение.

12. Добавляем недостающие катионы или анионы, учитывая, что количество добавляемых ионов в правую и левую части ионного уравнения должно быть одинаковым.

13. В данном случае источником ионов ─ была соль , поэтому с каждым молем в раствор попадает 2 моль ионов . В реакции они участия не принимают, поэтому в неизменном виде должны перейти в правую часть уравнения. Вместе с 14 моль ионов в раствор вносится 14 моль ионов . Из них 6 участвует в реакции в качестве восстановителя, а остальные 8, как и ионы , в неизменном виде остаются после реакции, т.е. дописываются в правую часть.

14. В результате получаем:

16. После этого можно объединить ионы в формулы реальных веществ:

40. Количественные характеристики окислительно-восстановительных переходов. Электродные потенциалы металлов. Гальванический элемент. Водородный электрод и водородный нуль отсчета потенциалов. Стандартные условия и стандартный потенциал полуреакции. Таблицы стандартных восстановительных потенциалов. Использование табличных данных для оценки возможности протекания ОВР.

Электродные потенциалы – разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом.

Возникновение электродного потенциала обусловлено переносом заряженных частик ч-з границу раздела фаз, специф. адсорбцией ионов. Величина электродного потенциала в неравномерном состоянии зависит от природы и состава контактирующих фаз.

Электродный потенциал является постоянной величиной при данной температуре, если пластинка металла опущена в раствор его соли с активностью ионов металла. Такой потенциал называется стандартным электродным потенциалом .


Гальванический элемент - химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока. Назван в честь Луиджи Гальвани. Переход химической энергии в электрическую энергию происходит в гальванических элементах.

Стандартный водородный электрод - электрод, использующийся в качестве электрода сравнения при различных электрохимических измерениях и в гальванических элементах. Водородный электрод (ВЭ) представляет собой пластинку или проволоку из металла, хорошо поглощающего газообразный водород (обычно используют платину или палладий), насыщенную водородом (при атмосферном давлении) и погруженную в водный раствор, содержащий ионы водорода. Потенциал пластины зависит от концентрации ионов Н + в растворе. Электрод является эталоном, относительно которого ведется отсчет электродного потенциала определяемой химической реакции. При давлении водорода 1 атм., концентрации протонов в растворе 1 моль/л и температуре 298 К потенциал ВЭ принимают равным 0 В. При сборке гальванического элемента из ВЭ и определяемого электрода, на поверхности платины обратимо протекает реакция:

2Н + + 2e − = H 2

то есть, происходит либо восстановление водорода, либо его окисление - это зависит от потенциала реакции, протекающей на определяемом электроде. Измеряя ЭДС гальванического электрода при стандартных условиях (см. выше) определяют стандартный электродный потенциал определяемой химической реакции.

ВЭ применяют для измерения стандартного электродного потенциала электрохимической реакции, для измерения концентрации (активности) водородных ионов, а также любых других ионов. Применяют ВЭ так же для определения произведения растворимости, для определения констант скорости некоторых электрохимических реакций.

Схема стандартного водородного электрода :

1. Платиновый электрод.

2. Подводимый газообразный водород.

3. Раствор кислоты (обычно HCl), в котором концентрация H + = 1 моль/л.

4. Водяной затвор, препятствующий попаданию кислорода воздуха.

5. Электролитический мост (состоящий из концентрированного р-ра KCl), позволяющий присоединить вторую половину гальванического элемента.

Нормальный электродный потенциал позволяет оценивать термодинамическую активность различных химических веществ, но в настоящее время нет методов, позволяющих измерять абсолютное значение его. В связи с этим электроды характеризуют так называемым стандартным потенциалом электрода, который представляет собой (по предложению Нернста) разность нормальных потенциалов рассматриваемого и стандартного водородного электродов, определенных при 25 °С (298 К). При таком подходе стандартный электродный потенциал водорода, условно принимают равным нулю. Тогда стандартный потенциал вещества, электродный потенциал которого в указанных условиях, более отрицателен, чем потенциал стандартного водородного электрода, считается отрицательным. Если же электродный потенциал вещества менее отрицателен, чем потенциал стандартного водородного электрода, стандартный потенциал вещества считается положительным.

Электрохимический ряд активности металлов (ряд напряжений , ряд стандартных электродных потенциалов ) - последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ 0 , отвечающих полуреакции восстановления катиона металла Me n+ : Me n+ + nē → Me

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

Ряд напряжений используется на практике для сравнительной [относительной] оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе:

· Металлы, стоящие левее, являются более сильными восстановителями, чем металлы, расположенные правее: они вытесняют последние из растворов солей. Например, взаимодействие Zn + Cu 2+ → Zn 2+ + Cu возможно только в прямом направлении.

· Металлы, стоящие в ряду левее водорода, вытесняют водород при взаимодействии с водными растворами кислот-неокислителей; наиболее активные металлы (до алюминия включительно) - и при взаимодействии с водой.

· Металлы, стоящие в ряду правее водорода, с водными растворами кислот-неокислителей при обычных условиях не взаимодействуют.

· При электролизе металлы, стоящие правее водорода, выделяются на катоде; восстановление металлов умеренной активности сопровождается выделением водорода; наиболее активные металлы (до алюминия) невозможно при обычных условиях выделить из водных растворов солей.

41. Окислительно-восстановительные равновесия в растворах. Уравнение Нернста. Электролиз. Электрохимические источники энергии. Коррозия как электрохимический процесс. Электролиз растворов и расплавов. Электролитическое получение металлов. Закон Фарадея. Практическое значение электролиза.

Электролиз – процесс раздельного окисления и восстановления на электродах, осуществляемый за счет протекания тока от внешнего источника. Анод = окисление, положительно заряжен, катод = восстановление, отрицательно заряжен.

Закон Фарадея : масса выделившегося при электролизе вещества прямо пропорциональна количеству прошедшего через раствор электричества. Равные количества электричества способствуют выделению из различных химических соединений эквивалентных масс.

m=(M*I*t)/(n*F)

Практическое значение электролиза

Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода а также хлора, гидроксида натрия. Большое количество металлов извлекается из руд и подвергается переработке с помощью электролиза. Также электролиз является основным процессом, благодаря которому функционируют химеские источники тока.

Электролиз применяется в очистке сточных вод.

Как вы уже знаете, химические процессы могут сопровож­даться различными явлениями - поглощением и выделением теплоты, света, звука и т.д. В частности, они могут приводить к возникновению электрического тока или вызываться им. Такие процессы называются электрохимическими, и их открытие сыг­рало существенную роль как в химии, так и в физике.

Возьмем два одинаковых стакана. В один нальем раствор хло­рида меди и опустим в него медную пластину, в другой - раствор хлорида цинка и опустим в него цинковую пластину. Внешне при этом в обоих стаканах ничего не происходит. Однако если соеди­нить металлические пластины проводником с встроенным в него гальванометром и амперметром, то мы увидим, что стрелка галь­ванометра отклонится, показывая наличие разности потенциа­лов. При этом стрелка амперметра останется на нуле, что свиде­тельствует об отсутствии тока между пластинами. Что же происходит?

Хотя, опуская пластину меди в раствор соли меди, мы ничего не видели, кое-что все же происходило. В очень тонком (практически мономолекулярном) слое раствора, прилегающем к металлу, полярные молекулы воды начали вырывать из кристаллической решетки меди ее ионы:

Cu (тв) «Cu 2+ +2e -

Этот процесс можно рассматривать как обычную химическую реакцию, но с участием необычного реагента - электронов, кото­рые в результате реакции остаются в металле, придавая ему отри­цательный заряд, Слой раствора, прилегающий к металлу, за счет избытка положительных ионов приобретает положительный за­ряд. Возникает разница потенциалов, которая стремится вернуть

ионы меди обратно в металл, и устанавливается равновесие. Получается, что в результате химического процесса появилось электрическое устройство - конденсатор (правда, имеющий мо­лекулярные размеры). Он называется двойным электрическим слоем, а вся созданная система (металл - раствор его соли) - полуэлементом, В отличие от обычного химического равновесия, полученное нами характеризуется не только соотношением кон­центраций реагентов и продуктов, но и разницей потенциалов в двойном электрическом слое. Эта разница называется электродным потенциалом металла и характеризует окислительно-вос­становительную способность твердого металла. (Сразу отметим, что такую способность для газообразного металла характеризует совсем другая величина - ионизационный потенциал, который равен энергии, необходимой для отрыва электрона от изолированного атома).

Непосредственно измерить электродный потенциал практически невозможно - ведь он существует между объектами, разделёнными одним слоем молекул. Однако если взять два полуэлемента, образованных разными металлами (как в нашем опыте), то потенциалы на металлических пластинах будут разными, что мы и заметили. Полученная система из двух полуэлементов называется гальваническим элементом.

: Если мы соединим в нашем опыте стаканы трубочкой с раствором какой-либо соли (солевым мостиком), то амперметр покажет наличие тока. При этом, поскольку электродный потенциал цинка ниже, чем у меди, то электроны из цинковой пластины пойдут в медную. По принципу Ле Шателье в обоих полуэлементах сместится равновесие в двойном электрическом слое (ведь электроны участвуют в реакции!) Это приведет к тому, что медь из раствора будет осаждаться на медной пластине, а цинк уходить с цинковой пластины в раствор. По солевому мостику избыток положительных ионов из стакана с хлоридом цинка будет переходить в раствор хлорида меди, восстанавливая электростатическое равновесие. Этот процесс будет продолжаться до тех пор, пока либо не растворится полностью цинк, либо не кончится хлорид меди. Если отвлечься от электрических процессов и рассматривать только химические, то получится реакция: Cl 2 +Zn=Cu+ZnCl 2

Но ее можно провести и без гальванического элемента! Однако только его участие объясняет, почему реакция идет именно в этом направлении, а, скажем, не наоборот. Таким образом, знание величин электродных потенциалов позволяет предсказать возмож-

ность и направление окислительно-восстановительных реакций. Как же их узнать?

Если использовать один и тот же полуэлемент (электрод срав­нения) в сочетании с различными другими, то можно получить набор величин, которые будут отличаться от электродных потен­циалов сравниваемых металлов на одну и ту же величину - на потенциал электрода сравнения. На практике эти величины мож­но использовать так же, как и сами электродные потенциалы.

Реально в качестве электрода сравнения используется водо­родный электрод. Он представляет собой специально подготов­ленную платиновую пластину, погруженную в раствор серной кислоты с концентрацией ионов водорода 1 моль/л и омываемую непрерывной струей водорода под давлением 100000 Па при тем­пературе 25°С. При этом на поверхности платины происходят следующие процессы.

Н«Н + +e - (2)

Реакция (2), как видно, очень похожа на ту, что происходит в металлическом полуэлементе. На платиновой пластине появляет­ся потенциал, который условно принят за ноль.

Если пластину металла, погруженного в раствор его соли с концентрацией 1 моль/л, соединить в гальванический элемент с водородным электродом при температуре 25°С, то возникшая раз­ность потенциалов называется стандартным электродным потен­циалом металла и обозначается как E°.

Металлы, расположенные в порядке возрастания их стан­дартных электродных потенциалов, образуют так называемый электрохимический ряд напряжений металлов

Li, Rb, К, Ва, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au

Если вспомнить, что происходило в нашем гальваническом элементе, то легко понять, почему расположение металлов в этом ряду предсказывает их свойства:

1) Каждый металл может вытеснять (восстанавливать) из раство­ров их солей те металлы, которые стоят в ряду напряжений после него.

2) Все металлы, имеющие отрицательный электродный потенци­ал (то есть стоящие в ряду напряжений до водорода), могут вытеснять (восстанавливать) его из растворов кислот.

Как нетрудно догадаться, понятие стандартного электродного потенциала приложимо не только к системе металл/ион металла, но и к любой реакции, проходящей с участием электронов. Эти реакции вам хорошо знакомы: вы их писали, составляя электрон­но-ионный баланс для уравнивания окислительно-восстанови­тельных реакций, например:

Cr 2 O 2- 7 +14Н + +бe - ®2Cr 3+ +7Н 2 O

Мы не будем останавливаться на том, как измеряют стандарт­ные электродные потенциалы таких полуреакций - это выходит за рамки данного курса, но такие методы есть, и с их помощью определены стандартные окислительно-восстановительные по­тенциалы огромного количества реакций. Они сведены в табли­цы, где приводятся стандартные потенциалы реакций в форме:

| окисленная форма | + ne - ® | восстановленная форма |

и, соответственно, показывают окислительную способность окис­ленной формы. Для того, чтобы понять, возможно ли протекание окислительно-восстановительной реакции, необходимо найти разность стандартных потенциалов соответствующих полуреак­ций. Например, узнаем, можно ли с помощью кислого раствора бихромата получить свободные галогены окислением бромидов и хлоридов. Находим в таблице 12 полуреакцию для окислителя

В случае бромида разница потенциалов 0.28 В > 0 и реакция K 2 Cr 2 O 7 +KBr+H 2 SO 4 ®Cr 2 (SO 4) 3 +K 2 SO 4 +H 2 O+Br 2

будет идти. В случае же хлорида разница составляет -0.01 В<0 и аналогичная реакция происходить не будет. Напротив, будет идти обратная реакция, то есть окисление трехвалентного хрома в кислом растворе хлором. Однако нужно помнить, что выяснять направление реакции с помощью стандартных потенциалов можно только при условии, что реакция проходит при 25°С, а Концентрации всех реагентов - 1 моль/л. Так, на самом деле реакция окисления хлорида калия бихроматом калия будет идти, так как при 25°С невозможно создать в растворе концентрацию хлора 1 моль/л.