Ароматические соединения. Правила ориентации. Ароматичность: критерии ароматичности, правило ароматичности Хюккеля, примеры бензоидных и небензоидных ароматических соединений Ароматическое соединение углеводород ароматического ряда

20.02.2024 История 

Ароматические углеводороды – соединения углерода и водорода, в молекуле которых имеется бензольное кольцо. Важнейшими представителями ароматических углеводородов являются бензол и его гомологи – продукты замещения одного или более атомов водорода в молекуле бензола на углеводородные остатки.

Строение молекулы бензола

Первое ароматическое соединение – бензол – было открыто в 1825 г. М. Фарадеем. Была установлена его молекулярная формула – С 6 Н 6. Если сравнить его состав с составом предельного углеводорода, содержащего такое же количество атомов углерода, — гексаном (С 6 Н 14), то можно заметить, что бензол содержит на восемь атомов водорода меньше. Как известно, к уменьшению количества атомов водорода в молекуле углеводорода приводит появление кратных связей и циклов. В 1865 г. Ф. Кекуле предложил его структурную формулу как циклогексантриена – 1, 3, 5.


Таким образом, молекула, соответствующая формуле Кекуле , содержит двойные связи, следовательно, бензол должен иметь ненасыщенный характер, т. е. легко вступать в реакции присоединения: гидрирования, бромирования, гидратации и т. д.

Однако данные многочисленных экспериментов показали, что бензол вступает в реакции присоединения только в жестких условиях (при высоких температурах и освещении), устойчив к окислению. Наиболее характерными для него являются реакции замещения, следовательно, бензол по характеру ближе к придельным углеводородам.

Пытаясь объяснить эти несоответствия, многие ученые предлагали различные варианты структуры бензол. Окончательно строение молекулы бензола было подтверждено реакцией его образования из ацетилена. В действительности углерод — углеродные связи в бензоле равноценны, и их свойства не похожи на свойства ни одинарных, ни двойных связей.

В настоящее время бензол обозначают или формулой Кекуле, или шестиугольником, в котором изображают окружность.

Так в чем же особенность структуры бензола? На основании данных исследователей и расчетов сделан вывод о том, что все шесть углеродных атомов находятся в состоянии sp 2 -гибридизации и лежат в одной плоскости. Негибридизированные p -орбитали атомов углерода, составляющие двойные связи (формула Кекуле), перпендикулярны плоскости кольца и параллельны друг другу.

Они перекрываются между собой, образуя единую π-систему. Таким образом, система чередующихся двойных связей, изображенных в формуле Кекуле, является циклической системой сопряженных, перекрывающихся между собой -связей. Эта система представляет собой две тороидальные (похожие на бублик) области электронной плотности, лежащие по обе стороны бензольного кольца. Так, изображать бензол в виде правильного шестиугольника с окружностью в центре (π -система) более логично, чем в виде циклогексатриена-1,3,5.

Американский ученый Л. Полинг предложил представлять бензол в виде двух граничных структур, отличающихся распределением электронной плотности и постоянно переходящих друг в друга, т. е. считать его промежуточным соединением, «усреднением» двух структур.

Данные измерения длин связей подтверждают эти предположения. Выяснено, что все С-С связи в бензоле имеют одинаковую длину (0,139 нм). Они несколько короче одинарных С-С связей (0,154 нм) и длиннее двойных (0,132 нм).

Существуют также соединения, молекулы которых содержат несколько циклических структур.

Изомерия и номенклатура

Для гомологов бензола характерна изомерия положения нескольких заместителей . Простейший гомолог бензола - толуол (метилбензол) — не имеет таких изомеров; следующий гомолог представлен в виде четырех изомеров:


Основой названия ароматического углеводорода с небольшими заместителями является слово бензол . Атомы в ароматическом кольце нумеруют, начиная от старшего заместителя к младшему:


По старой номенклатуре положения 2 и 6 называют ортоположениями , 4 - пара- , а 3 и 5 - метаположениями.

Физические свойства
Бензол и его простейшие гомологи в обычных условиях весьма токсичные жидкости с характерным неприятным запахом. Они плохо растворяются в воде, но хорошо - в органических растворителях.

Химические свойства бензола

Реакции замещения . Ароматические углеводороды вступают в реакции замещения.
1. Бромирование. При реакции с бромом в присутствии катализатора, бромида железа (ΙΙΙ), один из атомов водорода в бензольном кольце может замещаться на атом брома:

2. Нитрирование бензола и его гомологов . При взаимодействии ароматического углеводорода с азотной кислотой в присутствии серной (смесь серной и азотной кислот называют нитрующей смесью) происходит замещение атома водорода на нитрогруппу -NO 2:

Восстановлением образовавшегося в этой реакции нитробензола получают анилин — вещество, которое применяется для получения анилиновых красителей:

Эта реакция носит имя русского химика Зинина.
Реакции присоединения. Ароматические соединения могут вступать и в реакции присоединения к бензольному кольцу. При этом образуются циклогексан или его производные.
1. Гидрирование . Каталитическое гидрирование бензола протекает при более высокой температуре, чем гидрирование алкенов:

2. Хлорирование. Реакция идет при освещении ультрафиолетовым светом и является свободнорадикальной:

Гомологи бензола

Состав их молекул отвечает формуле С n H 2 n-6 . Ближайшие гомологи бензола:

Все следующие за толуолом гомологи бензола имеют изомеры. Изомерия может быть связана как с числом и строением заместителя (1, 2), так и с положением заместителя в бензольном кольце (2, 3, 4). Соединения общей формулы С 8 Н 10:

По старой номенклатуре, употребляемой для указания относительного расположения двух одинаковых или разных заместителей в бензольном кольце, используют приставки орто — (сокращенно о-) – заместители расположены у соседних атомов углерода, мета- (м -) – через один атом углерода и пара — (п -) – заместители друг против друга.
Первые члены гомологического ряда бензола – жидкости со специфическим запахом. Они легче воды. Являются хорошими растворителями.

Гомологи бензола вступают в реакции замещения (бромирование, нитрирование). Толуол окисляется перманганатом при нагревании:

Гомологи бензола используются как растворители, для получения красителей, средств для защиты растений, пластмасс, лекарств.



















Особенности ароматических соединений. Бензол является первым представителем ароматических углеводородов. Он обладает рядом своеобразных свойств, отличающих его от изученных ранее предельных и непредельных ациклических углеводородов. Ароматический характер бензола определяется его строением и проявляется в химических свойствах.

Состав бензола выражается формулой C 6 H 6 . Общая формула гомологов ряда бензола C n H 2 n -6 . Разность между этой формулой и формулой ряда предельных углеводородов C n H 2 n +2 равна . Следовательно, по химическому составу бензол и его гомологи являются непредельными соединениями. Их непредельный характер не проявляется в типичных реакциях. Можно было бы ожидать, что бензол будет вести себя подобно этилену, бутадиену и другим типичным непредельным углеводородам. Однако, он не обесцвечивает бромную воду, т. е. в обычных условиях не присоединяет бром. Раствор марганцевокислого калия при взбалтывании с бензолом не обесцвечивается, т. е. бензол устойчив в этих условиях к окислению. Даже при длительном кипячении с раствором КМn0 4 бензол почти не окисляется. Для него, в основном, характерны реакции замещения:

а) В присутствии катализаторов - кислот Льюиса (FeCl 3 , АlСl 3 ) хлор и бром замещают атомы водорода в молекуле бензола:

б) Концентрированная серная кислота не вызывает полимеризации бензола, как это происходит в случае алкадиенов, а приводит к получению бензолсульфокислоты:

в) При действии нитрующей смеси (концентрированные НNO 3 и H 2 SO 4 ) происходит нитрование ядра (введение в ядро нитрогруппы -NO 2 ) с образованием нитропроизводных бензола.

нитробензол

Классификация реакций замещения. При замещении в бензольном кольце возможны три типа реакций в зависимости от природы атакующей частицы.

1. Радикальное замещение. Если атакующий агент R – радикал, несущий неспаренный электрон, то водород, связанный с атомом углерода ядра, отщепляется с одним из электронов электронной пары -связи. Такой тип замещения называется радикальным. Реакция радикального замещения редко используется в ароматическом ряду.

R + Н-С 6 Н 5 R-С 6 Н 5 + Н

2. Нуклеофильное замещение. При действии несущих отрицательный заряд нуклеофильных частиц на замещенный бензол С 6 Н 5 Х (где Х – заместитель), отщепляющаяся группа Х - уходит вместе с парой -электронов, ранее осуществлявших ее связь с ядром:

Z - + X: C 6 H 5 Z-C 6 H 5 + X -

Примером может служить реакция взаимодействия натриевой соли бензолсульфокислоты со щелочью. Эта реакция лежит в основе промышленного метода получения фенола:

Как правило, для успешного протекания реакций нуклеофильного замещения в ядре должен находиться дополнительно один или лучше два сильных электроноакцепторных заместителя (–NO 2 , –SO 3 Н , –СF 3 ).

3. Электрофильное замещение.

Z + + X:C 6 H 5 Z-C 6 H 5 + X +

Во всех реакциях этого типа атакующий реагент (Y + ) несет на атоме, вступающем в связь с углеродным атомом бензольного ядра, положительный заряд либо имеет ярко выраженный катионоидный характер и образует новую связь за счет пары электронов, ранее осуществлявшей связь С-Н . Замещающийся атом водорода уходит в виде протона (Н + ).

Реакции присоединения к бензолу. В отдельных редких случаях бензол способен к реакциям присоединения. Гидрирование, т. е. присоединение водорода, происходит при действии водорода в жестких условиях в присутствии катализаторов (Ni , Pt , Pd ). При этом молекула бензола присоединяет три молекулы водорода с образованием циклогексана:

циклогексан

Если раствор хлора или брома в бензоле подвергнуть действию солнечного света или ультрафиолетовых лучей, то происходит радикальное присоединение трех молекул галогена с образованием сложной смеси стереоизомеров гексахлорциклогексана (гексахлорана):

Таким образом, ароматический характер бензола (и других аренов) выражается в том, что это соединение, по составу являясь непредельным, в целом ряде химических реакций проявляет себя как предельное соединение; для него характерны химическая устойчивость, трудность реакций присоединения. Только в особых условиях (катализаторы, облучение) бензол ведет себя как триеновый углеводород.

5.2 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Общее рассмотрение.

Ароматическими углеводородами (аренами) называются вещества, в молекулах которых содержится одно или несколько бензольных колец - циклических групп атомов углерода с особым характером связей.

Понятие «бензольное кольцо» сразу требует расшифровки. Для этого необходимо хотя бы коротко рассмотреть строение молекулы бензола. Первая структура бензола была предложена в 1865 г. немецким ученым А. Кекуле:

Эта формула правильно отражает равноценность шести атомов углерода, однако не объясняет ряд особых свойств бензола. Например, несмотря на ненасыщенность, бензол не проявляет склонности к реакциям присоединения: он не обесцвечивает бромную воду и раствор перманганата калия, т.е. не дает типичных для непредельных соединений качественных реакций.

Особенности строения и свойств бензола удалось полностью объяснить только после развития современной квантово-механической теории химических связей. По современным представлениям все шесть атомов углерода в молекуле бензола находятся в -гибридном состоянии. Каждый атом углерода образует -связи с двумя другими атомами углерода и одним атомом водорода, лежащие в одной плоскости. Валентные углы между тремя -связями равны 120°. Таким образом, все шесть атомов углерода лежат в одной плоскости, образуя правильный шестиугольник (-скелет молекулы бензола).

Каждый атом углерода имеет одну негибридизованную p-орбиталь.

Шесть таких орбиталей располагаются перпендикулярно плоскому -скелету и параллельно друг другу (рис. 21.1, а). Все шесть р-электронов взаимодействуют между собой, образуя -связи, не локализованные в пары, как при образовании обычных двойных связей, а объединенные в единое -электронное облако. Таким образом, в молекуле бензола осуществляется круговое сопряжение (см. § 19). Наибольшая -электронная плотность в этой сопряженной системе располагается над и под плоскостью -скелета (рис. 21.1, б).

Рис. 21.1. Строение молекулы бензола

В результате все связи между атомами углерода в бензоле выравнены и имеют длину 0,139 нм. Эта величина является промежуточной между длиной одинарной связи в алканах (0,154 нм) и длиной двойной связи в алкенах (0,133 нм). Равноценность связей принято изображать кружком внутри цикла (рис. 21.1, в). Круговое сопряжение дает выигрыш в энергии 150 кДж/моль. Эта величина составляет энергию сопряжения - количество энергии, которое нужно затратить, чтобы нарушить ароматическую систему бензола (сравните - энергия сопряжения в бутадиене равна всего 12 кДж/моль).

Такое электронное строение объясняет все особенности бензола. В частности, понятно, почему бензол трудно вступает в реакции присоединения - это привело бы к нарушению сопряжения. Такие реакции возможны только в очень жестких условиях.

Номенклатура и изомерия.

Условно арены можно разделить на два ряда. К первому относят производные бензола (например, толуол или дифенил), ко второму - конденсированные (полиядерные) арены (простейший из них - нафталин):

Мы рассмотрим только гомологический ряд бензола с общей формулой .

Структурная изомерия в гомологическом ряду бензола обусловлена взаимным расположением заместителей в ядре. Монозамещенные производные бензола не имеют изомеров положения, так как все атомы в бензольном ядре равноценны. Дизамещенные производные существуют в виде трех изомеров, различающихся взаимным расположением заместителей. Положение заместителей указывают цифрами или приставками:

Радикалы ароматических углеводородов называют арильными радикалами. Радикал называется фенил.

Физические свойства.

Первые члены гомологического ряда бензола (например, толуол, этилбензол и др.) - бесцветные жидкости со специфическим запахом. Они легче воды и в воде не растворимы. Хорошо растворяются в органических растворителях. Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Все арены горят коптящим пламенем ввиду высокого содержания углерода в их молекулах.

Способы получения.

1. Получение из алифатических углеводородов. При пропускании алканов с неразветвленной цепью, имеющих не менее 6 атомов углерода в молекуле, над нагретой платиной или оксидом хрома происходит дегидроциклизация - образование арена с выделением водорода:

2. Дегидрирование циклоалканов. Реакция происходит при пропускании паров циклогексана и его гомологов над нагретой платиной:

3. Получение бензола тримеризацией ацетилена - см. § 20.

4. Получение гомологов бензола по реакции Фриделя-Крафтса - см. ниже.

5. Сплавление солей ароматических кислот со щелочью:

Химические свойства.

Общее рассмотрение. Обладая подвижной шестеркой -электронов, ароматическое ядро является удобным объектом для атаки электрофильными реагентами. Этому способствует также пространственное расположение -электронного облака с двух сторон плоского -скелета молекулы (рис. 21.1, б)

Для аренов наиболее характерны реакции, протекающие по механизму электрофильного замещения, обозначаемого символом (от англ. substitution electrophilic).

Механизм электрофильного замещения можно представить следующим образом. Электрофильный реагент XY (X является электрофилом) атакует электронное облако, и за счет слабого электростатического взаимодействия образуется неустойчивый -комплекс. Ароматическая система при этом еще не нарушается. Эта стадия протекает быстро. На второй, более медленной стадии формируется ковалентная связь между электрофилом X и одним из атомов углерода кольца за счет двух -электронов кольца. Этот атом углерода переходит из в -гибридное состояние. Ароматичность системы при этом нарушается. Четыре оставшиеся -электрона распределяются между пятью другими атомами углерода, и молекула бензола образует карбокатион, или -комплекс.

Нарушение ароматичности энергетически невыгодно, поэтому структура -комплекса менее устойчива, чем ароматическая структура. Для восстановления ароматичности происходит отщепление протона от атома углерода, связанного с электрофилом (третья стадия). При этом два электрона возвращаются в -систему, и тем самым восстанавливается ароматичность:

Реакции электрофильного замещения широко используются для синтеза многих производных бензола.

Химические свойства бензола.

1. Галогенирование. Бензол не взаимодействует с хлором или бромом в обычных условиях. Реакция может протекать только в присутствии катализаторов - безводных . В результате реакции образуются галогенозамещенные арены:

Роль катализатора заключается в поляризации нейтральной молекулы галогена с образованием из нее электрофильной частицы:

2. Нитрование. Бензол очень медленно реагирует с концентрированной азотной кислотой даже при сильном нагревании. Однако при действии так называемой нитрующей смеси (смесь концентрированных азотной и серной кислот) реакция нитрования проходит достаточно легко:

3. Сульфирование. Реакция легко проходит под действием «дымящей» серной кислоты (олеума):

4. Алкилирование по Фриделю-Крафтсу. В результате реакции происходит введение в бензольное ядро алкильной группы с получением гомологов бензола. Реакция протекает при действии на бензол галогеналканов в присутствии катализаторов - галогенидов алюминия. Роль катализатора сводится к поляризации молекулы с образованием электрофильной частицы:

В зависимости от строения радикала в галогеналкане можно получить разные гомологи бензола:

5. Алкилирование алкенами. Эти реакции широко используются в промышленности для получения этилбензола и изопропилбензола (кумола). Алкилирование проводят в присутствии катализатора . Механизм реакции сходен с механизмом предыдущей реакции:

Все рассмотренные выше реакции протекают по механизму электрофильного замещения .

Реакции присоединения к аренам приводят к разрушению ароматической системы и требуют больших затрат энергии, поэтому протекают только в жестких условиях.

6. Гидрирование. Реакция присоединения водорода к аренам идет при нагревании и высоком давлении в присутствии металлических катализаторов (Ni, Pt, Pd). Бензол превращается в циклогексан, а гомологи бензола - в производные циклогексана:

7. Радикальное галогенирование. Взаимодействие паров бензола с хлором протекает по радикальному механизму только под воздействием жесткого ультрафиолетового излучения. При этом бензол присоединяет три молекулы хлора и образует твердый продукт - гексахлорциклогексан :

8. Окисление кислородом воздуха. По устойчивости к действию окислителей бензол напоминает алканы. Только при сильном нагревании (400 °С) паров бензола с кислородом воздуха в присутствии катализатора получается смесь малеиновой кислоты и ее ангидрида:

Химические свойства гомологов бензола.

Гомологи бензола имеют целый ряд особых химических свойств, связанных со взаимным влиянием алкильного радикала на бензольное кольцо, и наоборот.

Реакции в боковой цепи. По химическим свойствам алкильные радикалы подобны алканам. Атомы водорода в них замещаются на галоген по свободно-радикальному механизму. Поэтому в отсутствие катализатора при нагревании или УФ облучении идет радикальная реакция замещения в боковой цепи. Влияние бензольного кольца на алкильные заместители приводит к тому, что замещается всегда атом водорода у атома углерода, непосредственно связанного с бензольным кольцом (а-атома углерода).

Замещение в бензольном кольце возможно только по механизму в присутствии катализатора :

Ниже вы узнаете, какие из трех изомеров хлортолуола образуются в этой реакции.

При действии на гомологи бензола перманганата калия и других сильных окислителей боковые цепи окисляются. Какой бы сложной ни была цепь заместителя, она разрушается, за исключением -атома углерода, который окисляется в карбоксильную группу.

Гомологи бензола с одной боковой цепью дают бензойную кислоту:

Правила ориентации (замещения) в бензольном кольце.

Важнейшим фактором, определяющим химические свойства молекулы, является распределение в ней электронной плотности. Характер распределения зависит от взаимного влияния атомов.

В молекулах, имеющих только -связи, взаимное влияние атомов осуществляется через индуктивный эффект (см. § 17). В молекулах, представляющих собой сопряженные системы, проявляется действие мезомерного эффекта.

Влияние заместителей, передающееся по сопряженной системе -связей, называется мезомерным (М) эффектом.

В молекуле бензола -электронное облако распределено равномерно по всем атомам углерода за счет сопряжения.

Если же в бензольное кольцо ввести какой-нибудь заместитель, это равномерное распределение нарушается, и происходит перераспределение электронной плотности в кольце. Место вступления второго заместителя в бензольное кольцо определяется природой уже имеющегося заместителя.

Заместители подразделяют на две группы в зависимости от проявляемого ими эффекта (мезомерного или индуктивного): электронов опорные и электроноакцепторные.

Электронодонорные заместители проявляют эффект и повышают электронную плотность в сопряженной системе. К ним относятся гидроксильная группа -ОН и аминогруппа Неподеленная пара электронов в этих группах вступает в общее сопряжение с -электронной системой бензольного кольца и увеличивает длину сопряженной системы. В результате электронная плотность сосредоточивается в орто- и параположениях:

Алкильные группы не могут участвовать в общем сопряжении, но они проявляют эффект, под действием которого происходит аналогичное перераспределение -электронной плотности.

Электроноакцепторные заместители проявляют -М эффект и снижают электронную плотность в сопряженной системе. К ним относятся нитрогруппа сульфогруппа альдегидная -СНО и карбоксильная -СООН группы. Эти заместители образуют с бензольным кольцом общую сопряженную систему, но общее электронное облако смещается в сторону этих групп. Таким образом, общая электронная плотность в кольце уменьшается, причем меньше всего она уменьшается в метаположениях:

Например, толуол, содержащий заместитель первого рода, нитруется и бромируется в пара- и орто-положения:

Нитробензол, содержащий заместитель второго рода, нитруется и бромируется в мета-положение:

Помимо ориентирующего действия, заместители оказывают влияние и на реакционную способность бензольного кольца: ориентанты 1-го рода (кроме галогенов) облегчают вступление второго заместителя; ориентанты 2-г о рода (и галогены) затрудняют его.


Ароматические углеводороды (иначе называемые аренами) - это органические биосоединения, молекулы которых содержат один или несколько циклов с шестью атомами Карбона. Бензольное кольцо, характеризируется особенными физическими и химическими свойствами. Название «арены» вошло в органическую и общую химию в конце 18 - в начале 19 века. К ним относились вещества, которые состояли из двух химических соединений - Карбона и Гидрогена и имели приятный запах (смолы, бальзамы, эфирные Со временем название «ароматические углеводороды» потеряло свое значение, поскольку ароматические вещества встречались и среди других классов органических веществ, а большинство ароматических соединений имеют неприятный или специфический запах. Впервые бензол был выделен еще в начале 19 века из светильного газа. Чуть позже (1845) А.Ф. Гофман выделяет из каменноугольной смолы. В наше время класс аренов (по классификации ИЮПАК) объединяет соединения, в основе молекул которых есть бензельные ядра. Так вот такие соединения разделяют на одно- и многоядерные арены, а также на ароматические углеводороды с конденсированными ядрами.

Одноядерные арены - это которые содержат одно бензольное кольцо. Строение молекулы бензола, типичного представителя аренов, чаще всего демонстрируется формулой Кекуле в виде цикла из шести атомов Карбона, которые поочередно связаны простыми С-С и двойными С=С связями. Данное строение подтверждено данными современного физико-химического анализа.

Основные представления Кекуле о строении бензола таковы: 1) бензол имеет структуру шестиугольного кольца; 2) в бензельном кольце ести три простых и три двойных связей; 3) все шесть атомов Карбона в бензольном кольце равноценны между собой. Формула отображает элементарный состав бензола, соотношение атомов Карбона и Гидрогена в молекуле, отсутствие изомеров для однозамещенных производных бензола.

Ароматические углеводороды достаточно распространены в природе. Они являются составной частью каменноугольной смолы, которую получают после сухой перегонки каменного угля. Арены входят в состав многих сортов нефти и других природных продуктов (смолы, бальзамы и т.д.). В процессе сухой перегонки каменного угля в среднем получают около трех процентов каменноугольной смолы, или каменноугольного дегтя. А из каменноугольного дегтя при фракционной перегонке получают ряд фракций: легкое масло (содержит ксилены, толуол, бензол, тиофен), карболовое масло (содержит крезолы, фенолы и нафтален), креозотое масло (содержит нафтален), (содержит фенантрен, антрацен и другие высшие арены) и пек который используют для покрытия дорог и в качестве строительного материала.

Применение ароматических углеводородов. Бензол характеризируется специфическим запахом, практически нерастворим в воде. Является хорошим растворителем для органических биосоединений. Синтезируют из каменноугольной смолы. Бензол - ценное сырье для производства красителей, медикаментов, взрывчатых веществ, гербицидов, инсектицидов и т.д.

Толуол хорошо растворим в органических растворителях. Получают из каменноугольной смолы, а также из некоторых сортов нефти. Из толуола синтезируют бензольный спирт, бензальдегид, красители, медикаменты, сахарин, тринитротолуол.

Ксилены являются хорошими Получают из каменноугольного масла, а также при фракционной разгонке каменноугольной смолы. Из ксиленов синтезируют фталевый ангидрид, ксилен, искусственное волокно лавсан. Иногда ксилены добавляют к бензинам.

В В Е Д Е Н И Е

Ароматические соединения (арены) - очень интересная группа органических веществ. Они привлекают внимание исследователей необычным строением и свойствами, многоплановыми превращениями, широкими возможностями практического применения.

Арены заметно выделяются из всех других классов органических веществ свой высокой стабильностью и понятие "ароматичность", объединяющее циклические плоские -электронные системы, - одно из ключевых в органической химии, характеризует не только геометрию, но и электронное строение, пути и механизмы превращений.

Плоские циклические высокосимметричные структуры бензола, нафталина и других подобных соединений на первый взгляд исключают возможность появления стереоизомерии в этом ряду. Однако спиральные молекулы различных гелиценов, не содержащие ни одного тетраэдрического атома углерода, могут быть разделены на энантиомеры (как, например, гексагелицены 1 и 2 , отличающиеся необыкновенно высокой оптической активностью).

Одна из ярких особенностей поведения аренов в различных реакциях состоит в том, что они способны претерпевать скелетные изомеризации. Установлено, что валентные изомеры бензола и других аренов [например, бензол Дьюара (3), бензол Ладенбурга (4), бензол Хюккеля (5)], легко получаемые из различных предшественников, в том числе и из аренов, участвуют во многих термических и фотохимических превращениях последних. Меньшая термодинамическая стабильность валентных изомеров 3 - 5 по сравнению с бензолом часто предопределяет их переход в бензол.

Ароматические соединения - это не только классические арены и гетарены. К ним относятся также качественно новые в структурном отношении вещества - фуллерены, впервые описанные в 1985 г. Один из представителей этой группы трехмерных соединений - фуллерен С 60 .

После выделения бензола в индивидуальном состоянии (М.Фарадей, 1825 г.) до того момента, когда для него была предложена структурная формула (А.Кекуле, 1865 г.), прошло значительное время. В эти годы были сделаны очень важные открытия, касающиеся поведения в различных реакциях как бензола, так и многих других аренов. Можно отметить реакции, найденные Н.Зининым (превращение нитробензола в анилин, J.prakt.Chem. 1842, Bd. 27, S. 140 ), Г.Кольбе (синтез салициловой кислоты из фенола по Кольбе-Шмитту, Ann. 1860, Bd. 113, S. 125) , которые, наряду со многими другими, составляют основу технологического получения различных функциональных производных аренов и в настоящее время.

Предлагаемый Вашему вниманию Выпуск 3 из серии "Методические материалы по общему курсу органической химии" включает задачи и упражнения по общим проблемам химии аренов: номенклатура аренов, ароматичность карбо- и гетероциклов, закономерности реакций электрофильного замещения аренов. Материал выпуска использовался на протяжении многих лет на Химическом факультете МГУ для самостоятельной работы студентов III курса и в контрольных работах. Методическая комиссия кафедры органической химии рекомендует к изданию предлагаемое пособие.

РАЗДЕЛ "А"
Номенклатура ароматических соединений.
Ароматичность карбо- и гетероциклов.
Общие закономерности реакций электрофильного замещения аренов
(нитрование, галогенирование, сульфирование)

1. Напишите структурные формулы следующих соединений:
п -бромотолуол,
о -хлороанилин,
2,4-динитрохлорбензол,
м -диэтинилбензол,
о -ди-трет бутилбензол,
2,4,6-трибромоанизол,
п -хлорофенол,
м -нитротолуол,
о -бромохлоробензол,
п -хлоростирол,
кумол,
4-(N,N-диметиламино)бензальдегид,
2,4,6-трибромобензойная кислота,
3,5-дихлоротолуол,
2,4,6-тринитротолуол,
2-фенилпентан,
1,3,5-трифенилбензол,
1,1,2-трифенилциклопропан,
4,4"-динитробифенил,
хлористый бензил,
a,a"-дибромодибензилкетон,
бензиловый спирт,
1,3-дифенилпропан,
9,10-дибромоантрацен,
1-хлоро-3-метил-1-фенилбутан,
2-фенил-2-пропанол,
п -ксилол,
м -крезол,
2,4,6,-трибромфенол,
1,5-диаминонафталин,
4-метил-1-нафтол,
8-метил-1-нафтол

2. Назовите следующие соединения:

3. Какие из приведенных ниже соединений можно отнести к ароматическим, неароматическим, антиароматическим?

4. Среди предложенных ниже соединений укажите примеры согласованного и несогласованного влияния групп, контролирующих вступление третьего заместителя в бензольное кольцо в условиях реакций электрофильного замещения.

5. Сравнение дипольных моментов бензофенона и дифенилциклопропенона указывает на бульшую полярность циклического кетона по сравнению с арил-, диарил- и циклоалкилкетонами. Предложите объяснение высокой полярности производного циклопропенона.

6 .Основность N,N-диметиланилина в 2 раза выше, чем основность анилина. В то же время при переходе от 2,4,6-тринитроанилина к N,N-диметил-2,4,6-тринитроанилину основность последнего возрастает в 40000 раз. Почему введение двух метильных групп в амино-группу 2,4,6-тринитроанилина так резко увеличивает основность полинитропроизводного анилина?

7. Предложите структуры соединений, которые могут быть использованы для синтеза следующих производных бензола и нафталина с помощью реакций электрофильного замещения.

8. Напишите структуры продуктов нитрования следующих производных бензола и укажите условия, в которых указанная Вами ориентация реализуется:

9. Известно, что нитрование толуола приводит к смеси о -, м - и п -нитротолуолов, в которой о - и п -изомеры в сумме составляют до 95%. В отличие от толуола , ,-трифторотолуол в сходных условиях предпочтительно образует 3-нитро- , ,-трифторотолуол. Предложите объяснение наблюдаемой ориентации в реакции нитрования трифтортолуола.

10. Легко протекающая реакция циклооктатетраена (ЦОТ) в эфирном растворе с щелочными металлами завершается образованием солей циклооктатетраенил-дианионов, имеющих плоское строение. Выскажите Ваши соображения по поводу:
а) высокой активности ЦОТ в таких превращениях,
б) изменения геометрии восьмичленного цикла при переходе от нейтральной молекулы ЦОТ к соли дианиона.

11. Каждый из трех изомеров (1 , 2 и 3 ) дибромбензола поместили в отдельные колбочки. На основании нижеприведенных фактов определите их строение.
а) нитрование соединения 1 (т. пл. 87 °С) приводит только к одному нитродибромбензолу,
б) соединения 2 и 3 являются жидкостями,
в) нитрование соединения 2 дает 2 изомерных нитродибромбензола,
г) при нитровании соединения 3 получено 3 нитродибромбензола.

12. Среди нижеприведенных заместителей в ароматическом ядре укажите
12.1. орто , пара -ориентанты,
12.2. мета -ориентанты,
12.3. активирующие заместители в реакциях электрофильного замещения, дезактивирующие заместители в реакциях электрофильного замещения.

NH 3 + , -NMe 2 , CH 3 C(O)-, -SO 3 H, -C? N, -NO 2 , -NMe 3 + , -C(O)H, Alk-, -NHC(O)CH 3 , -OH, -OCH 3 , -OC(O)CH 3 , -NH 2 , -Cl, -Br, -I, -C(O)NH 2 , -C(O)OCH 3 , CH 3 CH=CH-, CF 3 -, C 6 H 5 -, -CH 2 NO 2 .
Объясните Ваши отнесения.

13. Обработка N,N-диметиланилина нитрующей смесью (HNO 3 + H 2 SO 4 , 5-10 °C) и далее водным аммиаком привела с выходом около 60% к м -нитро-N,N-диметиланилину. Приведите схему превращения и объясните причину наблюдаемого места вступления нитрогруппы в ароматическое ядро.

14. На основании рассмотрения всех возможных резонансных структур ароматического соединения фенантрена объясните, почему связь С(9)-С(10) более подобна двойной С=С связи, чем другие углерод-углеродные связи в молекуле.

15. Какие продукты Вы ожидаете в приведенных ниже превращениях:
15.1. фенетол + Br 2 (Fe)
15.2. бензальдегид + Br 2 (Fe)
15.3. ацетанилид + (HNO 3 + HSO 4)
15.4. кумол + (HNO 3 + HSO 4)
15.5. этилбензоат + (HNO 3 + HSO 4)
15.6. дейтеробензол + (H 2 O + H 2 SO 4)

16. Приведите резонансные структуры для карбокатионного интермедиата, предполагаемого в реакции электрофильного замещения нафталина при С(1); рассмотрите только структуры, сохранившие ароматичность в незамещенном кольце. Объясните, почему замещение при С(1) предпочтительнее замещения при С(2).(ответ)

17. Среди приведенных ниже пиразолов 1-4 укажите ароматические и неароматические соединения. Мотивируйте сделанные Вами отнесения.

18. К раствору 4-нитроанилина (0.32 мол) в 400 мл уксусной кислоты добавляют при перемешивании и температуре бани 65 о С раствор брома (0.64 мол) в 240 мл уксусной кислоты. После перемешивания при этой же температуре в течение 1 часа реакционную смесь охлаждают и выливают в смесь 1 л воды с 500 г льда. После промывания полученного осадка водой, высушивания при 100 о С и перекристаллизации из монометилового эфира этиленгликоля получают с выходом 96% вещество в виде зеленовато-желтых призм с т. пл. 201-202 о С, в ИК спектре которого найдены полосы поглощения при 3490, 3380, 1600, 1510 см -1 . Напишите уравнение реакции, назовите полученное соединение, сделайте отнесение приведенных полос поглощения. (ответ)

Назовите исходное соединение 1 . Приведите структуры, а также назовите соединения 2 -4 , образующиеся в ходе вышеприведенных превращений.

Для установления структур соединений используйте данные ИК спектров и спектров ПМР, приведенные в Таблице .

Соединение ИК спектры (n, см -1) Спектры ПМР, d, м. д.
2 3300,
1665, 1610,
1555, 1515,
1325,
825
CDCl 3 / (CD 3) 2 SO,

9.3 (с - шир., 1H),
7.44 (д, J=8.5 Гц, 2H),
7.02 (д, J=8.5 Гц, 2H),
2.27 (с, 3H),
2.10 (с, 3H)

3 3380, 3360,
1720,
1520,
1345
CDCl 3 ,

10.2 (с - шир., 1H),
8.57 (д, J=8.5 Гц, 1H),
7.93 (м, 1H),
7.40 (д, J=8.5 Гц, 1H),
2.34 (с, 3H),
2.26 (с, 3H)

4 3340, 3275,
1645, 1605,
1520,
1245
CDCl 3 ,

7.85 (д, J=1.5 Гц, 1H),
7.15 (дд, J 1 =8.5 Гц, J 2 =1.5 Гц, 1H),
6.70 (д, J=8.5 Гц, 1H),
6.10 (с - шир., 2H),
2.22 (с, 3H)

)

20. Исходя из бензола с использованием подходящих реагентов получите:
20.1. м -хлорнитробензол,
20.2. 1-фенил-1-пропанол,
20.3. м-нитробензамид,
20.4. изопропиловый эфир м -бромбензойной кислоты,
20.5. 1-бромо-2-фенилэтан,
20.6. метилбензилкетон,
20.7. этилфенилкетон,
20.8. н -пропилбензол (не используя реакцию Фриделя-Крафтса),
20.9. окись 1,2-дифенилэтилена
(ответ)

21. Исходя из толуола с использованием подходящих реагентов, не прибегая к реакциям алкилирования и ацилирования ароматического ядра, получите:
21.1. 4-(п -толил)бутанол-1,
21.2. п -толуиловый альдегид.
21.3. 4-дейтеротолуол (ответ)
22. Установите строение ароматического углеводорода С 9 Н 12 , при обработке которого бромом в присутствии бромного железа образуется единственное бромпроизводное. (ответ)

23. Предложите реагенты и условия осуществления приведенных ниже превращений:


(ответ)

24. Какое исходное лучше использовать для одностадийного синтеза 3-бромо-5-нитробензойной кислоты: 3-бромобензойную кислоту или 3-нитробензойную кислоту? Объясните. (ответ)

25. Приведите условия нижеприведенных превращений.

(ответ)

26. При обработке 4-изопропилтолуола (п -цимола) ацетилнитратом в уксусном ангидриде при 0°С наряду с 4-изопропил-2-нитротолуолом (I) (~40%) и небольшим количеством 4-изопропил-3-нитротолуола (II) получены eще 2 продукта: С 12 H 17 NO 4 (III) (~40%) и C 7 H 7 NO 2 (IV) (~10%).Соединение (III), которое представляет собой смесь цис -, транс -изомеров, легко превращается в соединение (I) при действии серной кислоты. Предложите структуры и возможные схемы механизмов образования соединений (III) и (IV) . (