Огни святого эльма природное явление где. Огни святого эльма - фото и природа необычного явления. Научное объяснение огней

Огни святого Эльма – это красивое свечение, вызываемое накоплением большого электрического разряда в грозовое время. В основном это явление наблюдается на корабельных мачтах, возле самолетов, летящих через грозовые тучи, а иногда и на горных вершинах.

Согласно легендарным сказаниям тех временем, огни святого Эльма стали появляться после смерти святого Эльма в то время, когда на море был очень сильный шторм. Святой Эльм являлся покровителем моряков Средиземного моря. Незадолго до того, как Эльм лег на смертный одр, он пообещал, что будет извещать всех моряков, подавая им знаки о том, будут ли они спасены или нет. И вскоре моряки, находящиеся на мачте корабля, увидели некое свечение, которое никогда никто не видел, и которое было принято в качестве обещанного знака.

Сенека говорил, что во время грозы звезды начинают как бы сходить с неба и садиться на корабельные мачты.В древности Греция и Рим связывали это явление со снисхождением с небес двух близнецов, которые носили имена Поллукс и Кастор. С тех самых пор такие яркие мистические огни являлись отнюдь не злым, а добрым знаком для каждого моряка, так как толковалось оно, что покровитель - святой Эльм – рядом, а значит, он не допустит появления беды. В противном случае появление одного огня было плохим предзнаменованием, так как за этим следовало сильное и кораблекрушение.

Счастливое предзнаменование заключалось в том, что огни святого Эльма можно было увидеть только ближе к завершению штормовой погоды. Огни, к сожалению, иногда появлялись и не с очень хорошими намерениями. Если они спускались на палубную часть корабля, то считалось, что дух покойника бродит по кораблю и вернулся с целью предупреждения корабельного состава о скором несчастье. Случалось, что такое свечение оказывалось над каким-либо человеком, тогда этот «светящийся» должен в скорейшем времени погибнуть.

Огни святого Эльма появляются в разных формах. Их можно увидеть и как равномерное свечение, и как отдельные мерцающие огоньки, и как факелы. Бывает, что такие огоньки могут являться людям в виде языков пламени, поэтому иногда люди бегут их тушить.

Явление достаточно красивое, поэтому может заворожить каждого очевидца. Некоторые могут испугаться его. Но в этом нет ничего страшного. В первый раз такие огоньки действительно могут отпугнуть. Но если видеть их часто, к этому можно привыкнуть. И связать его с плохим предзнаменованием вряд ли получится.

Такое явление в 1957 году было замечено рыболовами на Плещеевском озере под Переславлем-Залесским.

Объяснение явления с точки зрения науки

Мифологических трактовок этого явления существует огромное количество. Но его можно объяснить и с точки зрения научных исследований. В 1749 году Бен Франклин приравнял Огонь к электричеству, возникающему в атмосфере.

Согласно научным исследованиям, огни святого Эльма – это обычный точечный разряд, возникающий в основном на одиночных объектах. И появляется он только тогда, когда значение электрического поля становится больше 1000 вольт на 1 см. Именно поэтому огни святого Эльма появляются только в грозу. Во время сильных грозовых явлений можно лицезреть, как светятся листья, трава и рога животных. Очень часто такое свечение наблюдается неподалеку от торнадо, во время снежных бурь и шквалов. Именно в это время в облаках и на земной поверхности скапливается большое количество электрического разряда.

Планету Земля окружает электрическое поле. Чаще всего воздух имеет положительный заряд, а земля – отрицательный, что приводит к ионизации воздуха. Так появляется электрическое поле. Когда «тихий» разряд случается из каких-либо острых выступов (например, шпилей, башен, мачт, деревьев, шестов), откуда выскакивают маленькие электрические искры, то он называется «коронным». Если искр достаточно много, а сам процесс происходит на протяжении более длительного времени, то можно увидеть сияние бледно-голубоватого цвета, которое похоже на язычки пламени.

Одно из самых красивых и удивительных явлений природы – так называемые огни святого Эльма, которые порой можно наблюдать на вершинах заостренных предметов.


Верхние ветви деревьев, шпили башен, на море – верхушки мачт и другие подобные места иногда озаряются мерцающим голубоватым сиянием. Выглядеть оно может по-разному: как ровное мерцающее свечение в виде короны или ореола, как танцующие язычки пламени, как рассыпающий искры фейерверк.

Почему огни святого Эльма так называются?

В средневековой Европе танцующие огоньки связывали с образом католического святого Эльма (Эразма), покровительствовавшего морякам. Легенда гласит, что святой умер во время шторма на палубе корабля. Перед смертью он пообещал, что и с того света будет молиться за моряков и подавать знаки об их грядущей судьбе, и этими знаками станут танцующие волшебные огоньки.

Святой сдержал слово: с тех пор огни, возникшие на мачтах корабля во время шторма, предсказывали скорое окончание непогоды и служили добрым знаком для мореплавателей. Но если огонь спускался с мачты на палубу или сиял над человеком – это считалось предупреждением о грядущем несчастье или даже смерти.

Чаще всего огни святого Эльма можно увидеть в горных местностях, иногда встречается оно в степной зоне или на море. В наших широтах блуждающие огоньки появляются крайне редко – это связано с физической природой феномена, для появления которого требуются особые обстоятельства.

Как образуются огни святого Эльма?

Гипотеза о том, что огни святого Эльма связаны с , появилась еще в восемнадцатом столетии: ее высказал знаменитый исследователь Бенджамин Франклин, который одним из первых начал ставить опыты для изучения электрических разрядов. Однако полностью описать физическую природу явления ученые смогли только в двадцатом веке.

Появление свечения связано с наличием в воздухе большого количества ионизированных частиц. Обычно их присутствие в воздушной массе крайне незначительно, однако во время грозы их число резко возрастает – до такой степени, что они могут генерировать довольно сильное электромагнитное поле.


Столкновение иона с обычной молекулой газа приводит к появлению заряда и у той частицы, которая до этого была нейтральной. Напряжение поля стремительно растет, и процесс ионизации в этом случае напоминает сход снежной лавины. Это явление названо ударной ионизацией и подробно описано Н.Теслой.

На определенном этапе столкновения частиц приводят к образованию свечения в местах, где поле имеет особенно высокую напряженность.

Как правило, это происходит вокруг острых выступающих предметов, которыми чаще всего оказываются мачты кораблей, шпили башен или верхушки высоких деревьев. Эти места служат своеобразными громоотводами, по которым атмосферное электричество «стекает» в землю, сопровождая процесс характерным потрескиванием и запахом озона.

Летчики видят огни святого Эльма наиболее часто: они образуются на концах крыльев или лопастях пропеллеров, если самолету приходится пересекать фронт грозовых туч. Электрические разряды достигают нередко такой силы, что создают помехи для радиосвязи.

До сих пор возможны случаи гибели самолетов из-за потери управляемости, хотя сегодня каждый летательный аппарат обязательно оборудуется устройствами для нейтрализации атмосферных разрядов.

Почему огни святого Эльма нельзя увидеть у нас?

В нашей стране огни святого Эльма являются крайне редким явлением, для него даже не придумано собственного названия, поэтому мы пользуемся европейским.

Дело в том, что для образования свечения ионизированная воздушная масса должна спуститься достаточно низко, а у нас минимальная высота грозовой тучи составляет не меньше полукилометра.

В горных местностях Альп или Пиренеев эта высота существенно сокращается. Ураганные ветры, бушующие над гладью моря, тоже могут опустить ионизированный воздух достаточно низко, чтобы вызвать свечение корабельных мачт.


Появление разрядов атмосферного электричества способно вывести из строя электронику: мобильные телефоны, компьютеры и другую аппаратуру. Поэтому не стоит сожалеть об отсутствии огней святого Эльма – хотя они очень красивы, обычным людям созерцание этой красоты может обойтись довольно дорого.

Здравствуйте. В этом выпуске канала TranslatorsCafe.com мы поговорим об электрическом заряде. Мы рассмотрим примеры статического электричества и историю его изучения. Мы поговорим о том, как образуется молния. Мы также обсудим использование статического электричества в технике и медицине и завершим наш рассказ описанием принципов измерения электрического заряда и напряжения и приборов, которые для этого используются. Как ни удивительно, но мы сталкиваемся со статическим электричеством ежедневно - когда гладим любимую кошку, расчесываем волосы или натягиваем свитер из синтетики. Так мы сами поневоле становимся генераторами статического электричества. Мы буквально купаемся в нём, ведь мы живем в сильном электростатическом поле Земли. Это поле возникает из-за того, что её окружает ионосфера, верхний слой атмосферы, слой, который является проводящим. Ионосфера образовалась под действием космического излучения, главным образом Солнца, и имеет свой заряд. Занимаясь обыденными делами вроде разогрева пищи, мы совершенно не задумываемся о том, что пользуемся статическим электричеством, повернув кран подачи газа на горелке с автоподжигом или поднеся к ней электрозажигалку. Электрический заряд - это скалярная величина, определяющая способность тела быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Единица измерения заряда в системе СИ - кулон (Кл). 1 кулон представляет собой электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. 1 кулон эквивалентен приблизительно 6,242×10^18 e (e - заряд протона). Заряд электрона составляет 1,6021892(46) 10^–19 Кл. Такой заряд называется элементарным электрическим зарядом, то есть, минимальным зарядом, которым обладают заряженные элементарные частицы. Мы с детства инстинктивно боимся грома, хотя сам по себе он абсолютно безопасен - это просто акустическое следствие грозного удара молнии, которая вызвана атмосферным статическим электричеством. Моряки времён парусного флота впадали в священный трепет, наблюдая огоньки святого Эльма на своих мачтах, которые тоже являются проявлением атмосферного статического электричества. Люди наделяли верховных богов древних религий неотъемлемым атрибутом в виде молний, будь то греческий Зевс, римский Юпитер, скандинавский Тор или Перун русичей. С тех пор, как люди впервые начали интересоваться электричеством, прошли века, и мы даже порой не подозреваем, что учёные, сделав из изучения статического электричества глубокомысленные выводы, спасают нас от ужасов пожаров и взрывов. Мы укротили электростатику, нацелив в небо пики громоотводов и снабдив бензовозы заземляющими устройствами, позволяющими электростатическим зарядам безопасно уходить в землю. И, тем не менее, статическое электричество продолжает хулиганить, создавая помехи приёму радиосигналов - ведь на Земле одновременно бушует до 2000 гроз, которые ежесекундно генерируют до 50 разрядов молний. Исследованием статического электричества люди занимались с незапамятных времён. Даже термину «электрон» мы обязаны древним грекам, хотя они подразумевали под этим несколько иное - так они называли янтарь, который прекрасно электризовался при трении. К сожалению, наука о статическом электричестве не обошлась без жертв - российский учёный немецкого происхождения Георг Вильгельм Рихман во время проведения эксперимента был убит разрядом молнии, которая является наиболее грозным проявлением атмосферного статического электричества. В первом приближении, механизм образования зарядов грозового облака во многом сходен с механизмом электризации расчёски - в нём точно так же происходит электризация трением. Льдинки, образуясь из мелких капелек воды, охлаждённой из-за переноса восходящими потоками воздуха в верхнюю, более холодную, часть облака, сталкиваются между собой. Более крупные льдинки заряжаются при этом отрицательно, а меньшие - положительно. Из-за разницы в весе происходит перераспределение льдинок в облаке: крупные, более тяжёлые, опускаются в нижнюю часть облака, а более лёгкие льдинки меньшего размера собираются в верхней части грозового облака. Хотя всё облако в целом остаётся нейтральным, нижняя часть облака получает отрицательный заряд, а верхняя - положительный. Подобно наэлектризованной расческе, притягивающей воздушный шарик из-за индуцирования на его ближней к расческе стороне противоположного заряда, грозовое облако индуцирует на поверхности Земли положительный заряд. По мере развития грозового облака, заряды увеличиваются, при этом растёт напряжённость поля между ними, и, когда напряжённость поля превысит критическое значение для данных погодных условий, происходит электрический пробой воздуха - разряд молнии. Человечество обязано Бенджамину Франклину за изобретение громоотвода (точнее было бы назвать его молниеотводом), навсегда избавившего население Земли от пожаров, вызываемых попаданием молний в здания. Кстати, Франклин не стал патентовать своё изобретение, сделав его доступным для всего человечества. Не всегда молнии несли только разрушения - уральские рудознатцы определяли расположение железных и медных руд именно по частоте ударов молний в определённые точки местности. В числе учёных, посвятивших своё время исследованию явлений электростатики, необходимо упомянуть англичанина Майкла Фарадея, впоследствии одного из основателей электродинамики, и голландца Питера ван Мушенбрука, изобретателя прототипа электрического конденсатора - знаменитой лейденской банки. Наблюдая за гонками DTM, IndyCar или Formula 1, мы даже не подозреваем, что механики зазывают пилотов для смены резины на дождевую, опираясь на данные метеорологических РЛС. А эти данные, в свою очередь, основаны именно на электрических характеристиках подступающих грозовых облаков. Электростатическое электричество - наш друг и враг одновременно: его недолюбливают радиоинженеры, натягивая заземляющие браслеты при ремонте сгоревших плат в результате удара поблизости молнии. При этом, как правило, из строя выходят входные каскады оборудования. При неисправном заземляющем оборудовании оно может стать причиной тяжёлых техногенных катастроф с трагическими последствиями - пожаров и взрывов целых заводов. Тем не менее, статическое электричество приходит на помощь людям с острой сердечной недостаточностью, вызванной хаотическими судорожными сокращениями сердца больного. Его нормальная работа восстанавливается пропусканием небольшого электростатического разряда при помощи прибора, называемого дефибриллятором. Такие приборы можно увидеть в местах, где бывает много людей. Сцена возвращения пациента с того света с помощью дефибриллятора является своего рода классикой для кино определённого жанра. При этом следует отметить, что в кино традиционно показывают монитор с отсутствующим сигналом сердцебиения и зловещей прямой линией, хотя на самом деле применение дефибриллятора, как правило, не помогает, если сердце пациента полностью остановилось. Нелишне будет вспомнить о необходимости металлизации самолетов для защиты от статического электричества, то есть, соединения всех металлических частей самолета, включая двигатель, в одну электрически целостную конструкцию. На законцовках всего оперения самолета устанавливают статические разрядники для стекания статического электричества, накапливающегося во время полета вследствие трения воздуха о корпус самолета. Эти меры необходимы для защиты от помех, возникающих при разряде статического электричества, и обеспечения надежной работы бортового электронного оборудования. И самое главное, учёные пришли к выводу, что статическому электричеству, точнее его разрядам в виде молний, мы, вероятно, обязаны появлению жизни на Земле. В ходе экспериментов в середине прошлого века, с пропусканием электрических разрядов через смесь газов, близкую по составу газов к первичному составу атмосферы Земли, была получена одна из аминокислот, которая является «кирпичиком» нашей жизни. Для укрощения электростатики очень важно знать разность потенциалов или электрическое напряжение, для измерения которого придуманы приборы, называемые вольтметрами. Ввел понятие электрического напряжения итальянский учёный 19-го века Алессандро Вольта, по имени которого и названа эта единица. В своё время для измерения электростатического напряжения использовались гальванометры, названные по имени соотечественника Вольта Луиджи Гальвани. К сожалению, эти приборы электродинамического типа, вносили искажения в измерения. К систематическому изучению природы электростатики учёные приступили со времён работ французского учёного 18-го века Шарля Огюстена де Кулона. В частности, он ввёл понятие электрического заряда и открыл закон взаимодействия зарядов. По его имени названа единица измерения количества электричества - кулон. Правда, ради исторической справедливости, надо заметить, что годами ранее этим занимался английский учёный лорд Генри Кавендиш; к сожалению, он писал в стол и его работы были опубликованы наследниками лишь спустя 100 лет. Работы предшественников, посвященные законам электрических взаимодействий, дали возможность физикам Джорджу Грину, Карлу Фридриху Гауссу и Симеону Дени Пуассону создать изящную в математическом отношении теорию, которой мы пользуемся до сих пор. Главным принципом в электростатике является постулат об электроне - элементарной частице, входящей в состав любого атома и легко отделяющегося от него под воздействием внешних сил. Помимо этого, действуют постулаты об отталкивании одноимённых зарядов и притягивании разноимённых. Первым измерительным прибором явился простейший электроскоп, изобретённый Кулоном - два листочка электропроводной фольги, помещённые в стеклянную ёмкость. С тех пор измерительные приборы значительно эволюционировали - и теперь они могут измерять разницу в единицы нанокулон. С помощью особо точных физических приборов, российский учёный Абрам Иоффе и американский физик Роберт Эндрюс Милликен независимо друг от друга и почти в одно и то же время сумели измерить электрический заряд электрона. Ныне, с развитием цифровых технологий, появились сверхчувствительные и высокоточные приборы с уникальными характеристиками, которые из-за высокого входного сопротивления почти не вносят искажений в измерения. Помимо измерения напряжения, такие приборы позволяют измерять и другие важные характеристики электрический цепей, таких, как омическое сопротивление и протекающий ток в широком диапазоне измерений. Самые продвинутые приборы, называемые из-за их многофункциональности мультиметрами, или, на профессиональном жаргоне, тестерами, позволяют измерять также и частоту переменного тока, емкость конденсаторов и осуществлять проверку транзисторов и даже измерять температуру. Как правило, современные приборы имеют встроенную защиту, не позволяющую вывести прибор из строя при неправильном применении. Они компактны, просты в обращении и безопасны в работе - каждый из них проходит через ряд испытаний на точность, проверяется в тяжёлых режимах работы и заслужено получает сертификат безопасности. Спасибо за внимание! Если вам понравилась это видео, пожалуйста, не забудьте подписаться на наш канал!

Большой отряд воинов Древнего Рима находился в ночном походе. Надвигалась гроза. И вдруг над отрядом показались сотни голубоватых огоньков. Это засветились острия копий воинов. Казалось, железные копья солдат горят не сгорая!

Природы удивительного явления в те времена никто не знал, и солдаты решили, что такое сияние на копьях предвещает им победу. Тогда это явление называли огнями Кастора и Поллукса - по имени мифологических героев-близнецов. А позднее переименовали в огни Эльма - по названию церкви святого Эльма в Италии, где они появлялись.

Особенно часто такие огни наблюдали на мачтах кораблей. Римский философ и писатель Луций Сенека говорил, что во время грозы «звезды как бы нисходят с неба и садятся на мачты кораблей». Среди многочисленных рассказов об этом интересно свидетельство капитана одного английского парусника.

Случилось это в 1695 году, в Средиземном море, у Балеарских островов, во время грозы. Опасаясь бури, капитан приказал спустить паруса. И тут моряки увидели в разных местах корабля больше тридцати огней Эльма. На флюгере большой мачты огонь достиг более полуметра в высоту. Капитан послал матроса с приказом снять его. Поднявшись наверх, тот крикнул, что огонь шипит, как ракета из сырого пороха. Ему приказали снять его вместе с флюгером и принести вниз. Но как только матрос снял флюгер, огонь перескочил на конец мачты, откуда снять его было невозможно.

Еще более впечатляющую картину увидели в 1902 году моряки парохода «Моравия». Находясь у островов Зеленого Мыса, капитан Симпсон записал в судовом журнале: «Целый час в море полыхали молнии. Стальные канаты, верхушки мачт, нокреи, ноки грузовых стрел - все светилось. Казалось, что на шканцах через каждые четыре фута повесили зажженные лампы, а на концах мачт и нокрей засветили яркие огни». Свечение сопровождалось необычным шумом:

«Словно мириады цикад поселились в оснастке или с треском горел валежник и сухая трава...»

Огни святого Эльма разнообразны. Бывают они в виде равномерного свечения, в виде отдельных мерцающих огоньков, факелов. Иногда они настолько похожи на языки пламени, что их бросаются тушить.

Американский метеоролог Хэмфри, наблюдавший огни Эльма на своем ранчо, свидетельствует: это явление природы, «превращая каждого быка в чудище с огненными рогами, производит впечатление чего-то сверхъестественного». Это говорит человек, который по самому своему положению не способен, казалось бы, удивляться подобным вещам, а должен принимать их без лишних эмоций, опираясь только на здравый смысл.

Можно смело утверждать, что и ныне, несмотря на господство, - далеко, правда, не повсеместное, - естественнонаучного мировоззрения, найдутся люди, которые, окажись они в положении Хэмфри, увидели бы в огненных бычьих рогах нечто неподвластное разуму. О средневековье и говорить нечего: тогда в тех же рогах усмотрели бы, скорее всего, происки сатаны.

Коронный разряд, электрическая корона , разновидность тлеющего разряда, который возникает при резко выраженной неоднородности электрического поля вблизи одного или обоих электродов. Подобные поля формируются у электродов с очень большой кривизной поверхности (острия, тонкие провода). При Коронном разряде эти электроды окружены характерным свечением, также получившим название короны, или коронирующего слоя.

Примыкающая к короне несветящаяся («тёмная») область межэлектродного пространства называется внешней зоной. Корона часто появляется на высоких остроконечных предметах (святого Эльма огни), вокруг проводов линий электропередач и т. д Коронный разряд может иметь место при различных давлениях газа в разрядном промежутке, но наиболее отчётливо он проявляется при давлениях не ниже атмосферного.



Появление коронного разряда объясняется ионной лавиной. В газе всегда есть некоторое число ионов и электронов, возникающих от случайных причин. Однако, число их настолько мало, что газ практически не проводит электричества.

При достаточно большой напряженности поля кинетическая энергия, накопленная ионом в промежутке между двумя соударениями, может сделаться достаточной, чтобы ионизировать нейтральную молекулу при соударении. В результате образуется новый отрицательный электрон и положительно заряженный остаток - ион.

Свободный электрон при соударении с нейтральной молекулой расщепляет ее на электрон и свободный положительный ион. Электроны при дальнейшем соударении с нейтральными молекулами снова расщепляет их на электроны и свободные положительные ионы и т.д.

Такой процесс ионизации называют ударной ионизацией, а ту работу, которую нужно затратить, чтобы произвести отрывание электрона от атома - работой ионизации. Работа ионизации зависит от строения атома и поэтому различна для разных газов.

Образовавшиеся под влиянием ударной ионизации электроны и ионы увеличивает число зарядов в газе, причем в свою очередь они приходят в движение под действием электрического поля и могут произвести ударную ионизацию новых атомов. Таким образом, процесс усиливает сам себя, и ионизация в газе быстро достигает очень большой величины. Явление аналогично снежной лавине, поэтому этот процесс был назван ионной лавиной.

Натянем на двух высоких изолирующих подставках металлическую проволоку ab, имеющую диаметр несколько десятых миллиметра, и соединим ее с отрицательным полюсом генератора, дающего напряжение несколько тысяч вольт. Второй полюс генератора отведем к Земле. Получится своеобразный конденсатор, обкладками которого являются проволока и стены комнаты, которые, конечно, сообщаются с Землей.

Поле в этом конденсаторе весьма неоднородно, и напряженность его вблизи тонкой проволоки очень велика. Повышая постепенно напряжение и наблюдая за проволокой в темноте, можно заметить, что при известном напряжении возле проволоки появляется слабое свечение (корона), охватывающее со всех сторон проволоку; оно сопровождается шипящим звуком и легким потрескиванием.


Если между проволокой и источником включен чувствительный гальванометр, то с появлением свечения гальванометр показывает заметный ток, идущий от генератора по проводам к проволоке и от нее по воздуху комнаты к стенам, между проволокой и стенами переносится ионами, образованными в комнате благодаря ударной ионизации.

Таким образом, свечение воздуха и появление тока указывает на сильную ионизацию воздуха под действием электрического поля. Коронный разряд может возникнуть не только вблизи проволоки, но и у острия и вообще вблизи любых электродов, возле которых образуется очень сильное неоднородное поле.

Применение коронного разряда

Электрическая очистка газов (электрофильтры). Сосуд, наполненный дымом, внезапно делается совершенно прозрачным, если внести в него острые металлические электроды, соединенные с электрической машиной, а все твердые и жидкие частицы будут осаждаться на электродах. Объяснение опыта заключается в следующем: как только и проволоки зажигается корона, воздух внутри трубки сильно ионизируется. Газовые ионы прилипают к частицам пыли и заряжают их. Так как внутри трубки действует сильное электрическое поле, заряженные частицы пыли движутся под действием поля к электродам, где и оседают.

Счетчики элементарных частиц

Счетчик элементарных частиц Гейгера - Мюллера состоит из небольшого металлического цилиндра, снабженного окошком, закрытым фольгой, и тонкой металлической проволоки, натянутой по оси цилиндра и изолированной от него. Счетчик включают в цепь, содержащую источник тока, напряжение которого равно нескольким тысячам вольт. Напряжение выбирают необходимым для появления коронного разряда внутри счетчика.

При попадании в счетчик быстро движущегося электрона последний ионизирует молекулы газа внутри счетчика, отчего напряжение, необходимое для зажигания короны, несколько понижается. В счетчике возникает разряд, а в цепи появляется слабый кратковременный ток. Чтобы обнаружить его, в цепь вводят очень большое сопротивление (несколько мегаом) и подключают параллельно с ним чувствительный электрометр. При каждом попадании быстрого электрона внутрь счетчика листка электрометра будут откланяться.

Подобные счетчики позволяют регистрировать не только быстрые электроны, но и вообще любые заряженные, быстро движущиеся частицы, способные производить ионизацию путем соударений. Современные счетчики легко обнаруживают попадание в них даже одной частицы и позволяют поэтому с полной достоверностью и очень большой наглядностью убедиться, что в природе действительно существуют элементарные заряженные частицы.

Громоотвод

Подсчитано, что в атмосфере всего земного шара происходит одновременно около 1800 гроз, которые дают в среднем около 100 молний в секунду. И хотя вероятность поражения молнией какого-либо отдельного человека ничтожно мала, тем не менее молнии причиняют немало вреда. Достаточно указать, что в настоящее время около половины всех аварий в крупных линиях электропередачи вызывается молниями. Поэтому, защита от молнии представляет собой важную задачу.

Ломоносов и Франклин не только объяснили электрическую природу молнии, но и указали, как можно построить громоотвод, защищающий от удара молнии. Громоотвод представляет собой длинную проволоку, верхний конец которой заостряется и укрепляется выше самой высокой точки защищаемого здания. Нижний конец проволоки соединяют с металлическим листом, а лист закапывают в Землю на уровне почвенных вод.

Во время грозы на Земле появляются большие индуцированные заряды и у поверхности Земли появляется большое электрическое поле. Напряженность его очень велика около острых проводников, и поэтому на конце громоотвода зажигается коронный разряд. Вследствие этого индуцированные заряды не могут накапливаться на здании и молнии не происходит. В тех же случаях, когда молния все же возникает (а такие случаи очень редки), она ударяет в громоотвод и заряды уходят в Землю, не причиняя вреда зданию.

В некоторых случаях коронный разряд с громоотвода бывает настолько сильным, что у острия возникает явно видимое свечение. Такое свечение иногда появляется и возле других заостренных предметов, например, на концах корабельных мачт, острых верхушек деревьев, и т.д. Это явление было замечено еще несколько веков тому назад и вызывало суеверный ужас мореплавателей, не понимавших истинной его сущности.

Морское путешествие и в наши дни на современном лайнере может оказаться рискованным мероприятием. Стихия бывает сильнее человека и техники. А каково приходилось мореплавателям, отправлявшимся в неизведанные края на утлых парусниках? На кого было рассчитывать, к кому взывать о помощи во время страшных бурь?

С древних времен моряки Средиземноморья радовались и успокаивались, когда на мачтах парусных кораблей в непогоду появлялось необъяснимое свечение. Это означало, что их святой покровитель Эльм взял их под защиту.

Об усилении шторма говорили пляшущие, а об ослаблении — неподвижные огни святого Эльма.

Святой Эльм

День памяти католического мученика Эльма, который известен еще как Эразм (Эрмо) Антиохийский или Формийский, отмечается 2 июня. Мощи святого находятся в храме его имени в умер он в соседней Формии в 303 году. Легенда гласит, что он принял мученическую смерть — палачи намотали его внутренности на лебедку.
Этот предмет остался как атрибут святого, с которым он приходил на помощь попавшим в беду морякам.

Холодное пламя

Огонь на кончиках мачт по описаниям выглядел как пламя свечи или фейерверк, кисточки или шары бледно-голубого или фиолетового цвета. Поражает размер этих огней — от 10 сантиметров до метра! Иногда казалось, что весь такелаж покрыт фосфором и светится. Сияние могло сопровождаться звуком шипения или свиста.


Попытки отломить часть снасти и перенести пламя не удавались — с обломка огонь поднимался на мачту. От пламени ничего не загоралось, оно никого не обжигало, хотя светило довольно долго — от нескольких минут до часа и дольше.

Исторические сведения

Древние греки называли это свечение «Кастор и Поллукс», «Елена». Встречается и такое наименование огней: Corpus Santos, «Святой Гермес», «Святой Николай».
В дошедших до нас письменных источниках от Плиния Старшего и Юлия Цезаря, записках о путешествиях Колумба и Магеллана, письмах Дарвина с корабля "Бигль", сочинениях Мелвилла («Моби Дик») и Шекспира говорится о встречах мореплавателей с огнями.

Хроника кругосветного плавания повествует: «Во время тех штормов нам много раз являлся сам Святой Эльм в виде света... чрезвычайно темными ночами на грот-мачте, где оставался в течение двух и более часов, избавляя нас от уныния».

Знакомы не только морякам

Не только на кораблях, но и на шпилях и углах зданий, флагштоках, молниеотводах и других высоких предметах и сооружениях, имеющих острые окончания, загораются огни святого Эльма.

Пилотам самолетов также знакомо это явление. На винтах, заостренных кончиках крыльев и фюзеляжа пролетающего вблизи тучи лайнера могут появляться кисточкообразные разряды — огни святого Эльма. Фото Джеймса Эшби - командира экипажа, - сделанное однажды в грозу во время посадки в Пномпене, демонстрирует синее свечение на носу самолета.


Одновременно возникают сильные статические радиопомехи. Высказывалось мнение, что именно этот огонь вызвал возгорание водорода и стал причиной крушения огромного и роскошного дирижабля «Гинденбург» в мае 1937 года.

Хорошо знакомы с огнями святого Эльма альпинисты. Когда они входят в грозовое облако, над головами может появляться светящийся нимб, сияют кончики пальцев, с ледорубов стекает пламя. Наблюдатели говорят, что в грозу светятся даже макушки деревьев, рога быков и оленей, высокая трава.

Загадочные эффекты

Природа преподносит людям много интересного для разгадывания. Все знают, что такие явления, как радуга, гало (три солнца) в мороз, мираж в жару — оптические проделки атмосферы, создающей в воздухе призмы и зеркала, преломляющие и отражающие свет.

Завораживающие синие и зеленые сполохи полярного сияния создает возмущение электромагнитных полей Земли. За огни святого Эльма ответственно электричество атмосферы.

Научное объяснение

Так что из себя представляют огни святого Эльма? Какова природа этого явления? Мифология отступила перед объяснением Бенджамина Франклина, сделанным в 1749 году. Именно он описал, как молниеотвод притягивает небесный «электрический огонь» из тучи на расстоянии еще прежде, чем произойдет удар. Свечение на кончике устройства и является огнем святого Эльма.

Ионизирует воздух, вокруг остроконечных предметов концентрация ионов становится максимальной. Ионизированная плазма начинает светиться, но, в отличие от молнии, стоит на месте, а не движется.


Цвет плазмы зависит от состава ионизированного газа. Азот и кислород, из которых в основном состоит атмосфера, создают светло-голубое свечение.

Коронный разряд

Коронный, или тлеющий, разряд возникает, если потенциал электрического поля в воздухе неоднороден, а вокруг одиночного объекта становится больше 1 квольт/см. В хорошую погоду это значение в тысячу раз меньше. В начале формирования грозовых облаков оно вырастает до 5 вольт/см. Удар молнии — это разряд более, чем в 10 квольт на сантиметр.

Величина потенциала неоднородно распределяется в атмосфере — она больше возле заостренных предметов, находящихся на высоте.


Становится понятно, что близость грозы (или торнадо) создает в атмосфере потенциал, достаточный для появления ионной лавины, вызывающей голубоватое свечение заостренных предметов, находящихся на возвышении. Песчаная буря и извержение вулкана тоже ионизируют воздух и могут стать причиной этого явления.

Прирученное свечение

Современному отправляться в плавание или в полет во время грозы, чтобы посмотреть на свечение ионизированного газа, того, чем и являются огни святого Эльма. Что это такое - можно увидеть в обычной лампе дневного света, неоновой и других галогеновых лампах.

На самолетах приходится устанавливать приспособления, которые не дают атмосферному электричеству скапливаться на поверхности и создавать помехи.

Но хотя романтика и мифы сменяются обыденностью, интерес и волнение, связанные с необычными явлениями природы, не оставят человека никогда. Таинственные голубые огни святого Эльма будут будоражить воображение путешественников и заинтересованных читателей.